

Handbook of Formulae and Physical Constants

For The Use Of Students And Examination Candidates

Duplication of this material for student in-class use or for examination purposes is permitted without written approval.

Approved by the Interprovincial Power Engineering Curriculum Committee and the Provincial Chief Inspectors' Association's Committee for the standardization of Power Engineer's Examinations in Canada.

Table of Contents

<u>TOPIC</u>	PAGE
SI Multiples	1
Basic Units (distance, area, volume, mass, density)	2
Mathematical Formulae	6
Applied Mechanics	11
Thermodynamics	21
Fluid Mechanics	30
Electricity	33
Periodic Table	37
Useful Data	39
Interest Formulas and Tables	40

Names in the Metric System

VALUE	EXPONENT	SYMBOL	PREFIX
1 000 000 000 000	10 ¹²	Т	tera
1 000 000 000	10 ⁹	G	giga
1 000 000	10 ⁶	M	mega
1 000	10 ³	k	kilo
100	10 ²	h	hecto
10	10 ¹	da	deca
0.1	10 ⁻¹	d	deci
0.01	10 ⁻²	С	centi
0.001	10 ⁻³	m	milli
0.000 001	10 ⁻⁶	μ	micro
0.000 000 001	10 ⁻⁹	n	nano
0.000 000 000 001	10 ⁻¹²	p	pico

Conversion Chart for Metric Units

	To Milli-	To Centi-	To Deci-	To Metre, Gram, Litre	To Deca-	To Hecto-	To Kilo-
Kilo-	x 10 ⁶	x 10 ⁵	x 10 ⁴	x 10 ³	x 10 ²	x 10 ¹	
Hecto-	x 10 ⁵	x 10 ⁴	x 10 ³	x 10 ²	x 10 ¹		x 10 ⁻¹
Deca-	x 10 ⁴	x 10 ³	x 10 ²	x 10 ¹		x 10 ⁻¹	x 10 ⁻²
Metre, Gram, Litre	x 10 ³	x 10 ²	x 10 ¹		x 10 ⁻¹	x 10 ⁻²	x 10 ⁻³
Deci-	x 10 ²	x 10 ¹		x 10 ⁻¹	x 10 ⁻²	x 10 ⁻³	x 10 ⁻⁴
Centi-	x 10 ¹		x 10 ⁻¹	x 10 ⁻²	x 10 ⁻³	x 10 ⁻⁴	x 10 ⁻⁵
Milli-		x 10 ⁻¹	x 10 ⁻²	x 10 ⁻³	x 10 ⁻⁴	x 10 ⁻⁵	x 10 ⁻⁶

To Convert .

BASIC UNITS

SI

IMPERIAL

DISTANCE

1 metre (1 m) = 100 centimetres (100 cm) = 1000 millimetres (1000 mm)

1 kilometre (1 km) = 1000 m

12 in. = 1 ft 3 ft = 1 yd 5280 ft = 1 mile 1760 yd = 1 mile

Conversions:

1 in. = 25.4 mm 1 ft = 30.48 cm 1 mile = 1.61 km 1 yd = 0.914 m 1 m = 3.28 ft

Area

1 sq metre (1 m²) =
$$10\ 000\ \text{cm}^2$$

= $1\ 000\ 000\ \text{mm}^2$

 $10\ 000\ \text{m}^2 = 1\ \text{hectare}\ (1\ \text{ha})$

 $1 \text{ sq km} (1 \text{ km}^2) = 1 000 000 \text{ m}^2$

$$1 \text{ ft}^2 = 144 \text{ in.}^2$$

 $1 \text{ yd}^2 = 9 \text{ ft}^2$
 $1 \text{ sq mile} = 640 \text{ acre} = 1 \text{ section}$

Conversions:

$$1 \text{ in.}^2 = 6.45 \text{ cm}^2 = 645 \text{ mm}^2$$

 $1 \text{ m}^2 = 10.8 \text{ ft}^2$
 $1 \text{ acre} = 0.405 \text{ ha}$
 $1 \text{ sq mile} = 2.59 \text{ km}^2$

SI IMPERIAL

Volume

$$1 m^{3} = 1 000 000 cm^{3}$$

$$= 1 \times 10^{9} mm^{3}$$

$$1 dm^{3} = 1 litre$$

$$1 litre = 1000 cm^{3}$$

$$1 mL = 1 cm^{3}$$

$$1 m^{3} = 1000 litres$$

$$1 ft^3 = 1728 in.^3$$

$$1 yd^3 = 27 ft^3$$

$$1(\text{liquid}) U.S. gallon = 231 in.^3$$

$$= 4 (\text{liquid}) quarts$$

$$1 U.S. barrel (bbl) = 42 U.S. gal.$$

$$1 imperial gallon = 1.2 U.S. gal.$$

Conversions:

Mass and Weight

$$1 \text{ kilogram } (1 \text{ kg}) = 1000 \text{ grams}$$

 $1000 \text{ kg} = 1 \text{ tonne}$

$$2000 \text{ lb} = 1 \text{ ton (short)}$$

1 long ton = 2240 lb

Conversions:

1 kg (on Earth) results in a weight of 2.2 lb

Density

$$mass \, density = \frac{mass}{volume} \qquad \qquad weight \, density = \frac{weight}{volume}$$

$$\rho = \frac{m}{V} \, \left(\frac{kg}{m^3} \right) \qquad \qquad \rho = \frac{w}{V} \, \left(\frac{lb}{ft^3} \right)$$

Conversions:

(on Earth) a mass density of $1 \frac{\text{kg}}{\text{m}^3}$ results in a weight density of 0.0623 $\frac{\text{lb}}{\text{ft}^3}$

SI Imperial

RELATIVE DENSITY

In SI R.D. is a comparison of mass density to a standard. For solids and liquids the standard is fresh water.

In Imperial the corresponding quantity is **specific gravity**; for solids and liquids a comparison of weight density to that of water.

Conversions:

In both systems the same numbers hold for R.D. as for S.G. since these are equivalent ratios.

RELATIVE DENSITY (SPECIFIC GRAVITY) OF VARIOUS SUBSTANCES

Water (sea average) 1.03 Aluminum 2.56 Antimony 6.70 Bismuth 9.80 Brass 8.40 Brick 2.1 Calcium 1.58 Carbon (diamond) 3.4 Carbon (graphite) 2.3 Carbon (charcoal) 1.8 Clay 1.9 Coal 1.36-1.4 Cobalt 8.6 Copper 8.77 Cork 0.24 Glass (crown) 2.5 Gold 19.3 Lead 11.4 Magnesium 1.74 Wood (teak) 0.7-1.0 Wood (teak) 0.8		
Aluminum 2.56 Antimony 6.70 Bismuth 9.80 Brass 8.40 Brick 2.1 Calcium 1.58 Carbon (diamond) 3.4 Carbon (graphite) 2.3 Carbon (charcoal) 1.8 Clay 1.9 Coal 1.36-1.4 Cobalt 8.6 Copper 8.77 Cork 0.24 Glass (crown) 2.5 Gold 19.3 Usod (ebony) 1.1-1.2 Wood (ebony) 1.1-1.2 Wood (lignum-vitae) 1.3 Wood (oak) 0.7-1.0 Magnesium 1.74 Manganese 8.0	Water (fresh)1.00	Mica2.9
Antimony 6.70 Bismuth 9.80 Brass 8.40 Brick 2.1 Calcium 1.58 Carbon (diamond) 3.4 Carbon (graphite) 2.3 Carbon (charcoal) 1.8 Chromium 6.5 Clay 1.9 Coal 1.36-1.4 Cobalt 8.6 Copper 8.77 Cork 0.24 Glass (crown) 2.5 Glass (flint) 3.5 Gold 19.3 Lead 11.4 Magnesium 1.74 Magnesium 1.74 Mood (teak) 0.8	Water (sea average) 1.03	Nickel8.6
Bismuth 9.80 Brass 8.40 Brick 2.1 Calcium 1.58 Carbon (diamond) 3.4 Carbon (graphite) 2.3 Carbon (charcoal) 1.8 Chromium 6.5 Clay 1.9 Coal 1.36-1.4 Cobalt 8.6 Copper 8.77 Cork 0.24 Glass (crown) 2.5 Gold 19.3 Iron (cast) 7.21 Magnesium 1.74 Monganese 8.0 Oil (turpentine) 0.87 Platinum 0.87 Platinum 21.5 Sand (dry) 1.42 Silicon 2.6 Silver 10.57 Slate 2.1-2.8 Sodium 0.97 Steel (mild) 7.87 Wood (ash) 0.75 Wood (ash) 0.70 Wood (beech) 0.70 Wood (beech) 0.70 Wood (beech) 0.70	Aluminum2.56	Oil (linseed)0.94
Brass 8.40 Brick 2.1 Calcium 1.58 Carbon (diamond) 3.4 Carbon (graphite) 2.3 Carbon (charcoal) 1.8 Carbon (charcoal) 1.8 Chromium 6.5 Clay 1.9 Coal 1.36-1.4 Cobalt 8.6 Copper 8.77 Cork 0.24 Glass (crown) 2.5 Gold 19.3 Iron (cast) 7.21 Wood (ebony) 1.1-1.2 Wood (lignum-vitae) 1.3 Wood (oak) 0.7-1.0 Magnesium 1.74 Manganese 8.0	Antimony6.70	Oil (olive)0.92
Brick 2.1 Paraffin 0.86 Calcium 1.58 Platinum 21.5 Carbon (diamond) 3.4 Sand (dry) 1.42 Carbon (graphite) 2.3 Silicon 2.6 Carbon (charcoal) 1.8 Silver 10.57 Chromium 6.5 Slate 2.1-2.8 Clay 1.9 Sodium 0.97 Coal 1.36-1.4 Steel (mild) 7.87 Cobalt 8.6 Sulphur 2.07 Copper 8.77 Tin 7.3 Cork 0.24 Tungsten 19.1 Glass (crown) 2.5 Wood (ash) 0.75 Glass (flint) 3.5 Wood (beech) 0.7-0.8 Gold 19.3 Wood (ebony) 1.1-1.2 Iron (cast) 7.21 Wood (ignum-vitae) 1.3 Lead 11.4 Wood (oak) 0.7-1.0 Magnesium 1.74 Wood (teak) 0.8	Bismuth9.80	Oil (petroleum) 0.76-0.86
Calcium 1.58 Platinum 21.5 Carbon (diamond) 3.4 Sand (dry) 1.42 Carbon (graphite) 2.3 Silicon 2.6 Carbon (charcoal) 1.8 Silver 10.57 Chromium 6.5 Slate 2.1-2.8 Clay 1.9 Sodium 0.97 Coal 1.36-1.4 Steel (mild) 7.87 Cobalt 8.6 Sulphur 2.07 Copper 8.77 Tin 7.3 Cork 0.24 Tungsten 19.1 Glass (crown) 2.5 Wood (ash) 0.75 Glass (flint) 3.5 Wood (beech) 0.7-0.8 Gold 19.3 Wood (ebony) 1.1-1.2 Iron (cast) 7.21 Wood (elm) 0.66 Iron (wrought) 7.78 Wood (lignum-vitae) 1.3 Lead 11.4 Wood (oak) 0.7-1.0 Magnesium 1.74 Wood (teak) 0.8	Brass 8.40	Oil (turpentine) 0.87
Carbon (diamond) 3.4 Sand (dry) 1.42 Carbon (graphite) 2.3 Silicon 2.6 Carbon (charcoal) 1.8 Silver 10.57 Chromium 6.5 Slate 2.1-2.8 Clay 1.9 Sodium 0.97 Coal 1.36-1.4 Steel (mild) 7.87 Cobalt 8.6 Sulphur 2.07 Copper 8.77 Tin 7.3 Cork 0.24 Tungsten 19.1 Glass (crown) 2.5 Wood (ash) 0.75 Glass (flint) 3.5 Wood (beech) 0.7-0.8 Gold 19.3 Wood (ebony) 1.1-1.2 Iron (cast) 7.21 Wood (elm) 0.66 Iron (wrought) 7.78 Wood (lignum-vitae) 1.3 Lead 11.4 Wood (oak) 0.7-1.0 Magnesium 1.74 Wood (teak) 0.8	Brick2.1	Paraffin 0.86
Carbon (graphite) 2.3 Silicon 2.6 Carbon (charcoal) 1.8 Silver 10.57 Chromium 6.5 Slate 2.1-2.8 Clay 1.9 Sodium 0.97 Coal 1.36-1.4 Steel (mild) 7.87 Cobalt 8.6 Sulphur 2.07 Copper 8.77 Tin 7.3 Cork 0.24 Tungsten 19.1 Glass (crown) 2.5 Wood (ash) 0.75 Glass (flint) 3.5 Wood (beech) 0.7-0.8 Gold 19.3 Wood (ebony) 1.1-1.2 Iron (cast) 7.21 Wood (elm) 0.66 Iron (wrought) 7.78 Wood (lignum-vitae) 1.3 Lead 11.4 Wood (oak) 0.7-1.0 Magnesium 1.74 Wood (pine) 0.56 Manganese 8.0 Wood (teak) 0.8	Calcium1.58	Platinum21.5
Carbon (graphite) 2.3 Silicon 2.6 Carbon (charcoal) 1.8 Silver 10.57 Chromium 6.5 Slate 2.1-2.8 Clay 1.9 Sodium 0.97 Coal 1.36-1.4 Steel (mild) 7.87 Cobalt 8.6 Sulphur 2.07 Copper 8.77 Tin 7.3 Cork 0.24 Tungsten 19.1 Glass (crown) 2.5 Wood (ash) 0.75 Glass (flint) 3.5 Wood (beech) 0.7-0.8 Gold 19.3 Wood (ebony) 1.1-1.2 Iron (cast) 7.21 Wood (elm) 0.66 Iron (wrought) 7.78 Wood (lignum-vitae) 1.3 Lead 11.4 Wood (oak) 0.7-1.0 Magnesium 1.74 Wood (pine) 0.56 Manganese 8.0 Wood (teak) 0.8	Carbon (diamond)3.4	Sand (dry)1.42
Chromium 6.5 Slate 2.1-2.8 Clay 1.9 Sodium 0.97 Coal 1.36-1.4 Steel (mild) 7.87 Cobalt 8.6 Sulphur 2.07 Copper 8.77 Tin 7.3 Cork 0.24 Tungsten 19.1 Glass (crown) 2.5 Wood (ash) 0.75 Glass (flint) 3.5 Wood (beech) 0.7-0.8 Gold 19.3 Wood (ebony) 1.1-1.2 Iron (cast) 7.21 Wood (elm) 0.66 Iron (wrought) 7.78 Wood (lignum-vitae) 1.3 Lead 11.4 Wood (oak) 0.7-1.0 Magnesium 1.74 Wood (pine) 0.56 Manganese 8.0 Wood (teak) 0.8	Carbon (graphite)2.3	
Clay 1.9 Sodium 0.97 Coal 1.36-1.4 Steel (mild) 7.87 Cobalt 8.6 Sulphur 2.07 Copper 8.77 Tin 7.3 Cork 0.24 Tungsten 19.1 Glass (crown) 2.5 Wood (ash) 0.75 Glass (flint) 3.5 Wood (beech) 0.7-0.8 Gold 19.3 Wood (ebony) 1.1-1.2 Iron (cast) 7.21 Wood (elm) 0.66 Iron (wrought) 7.78 Wood (lignum-vitae) 1.3 Lead 11.4 Wood (oak) 0.7-1.0 Magnesium 1.74 Wood (pine) 0.56 Manganese 8.0 Wood (teak) 0.8	Carbon (charcoal) 1.8	Silver10.57
Coal 1.36-1.4 Steel (mild) 7.87 Cobalt 8.6 Sulphur 2.07 Copper 8.77 Tin 7.3 Cork 0.24 Tungsten 19.1 Glass (crown) 2.5 Wood (ash) 0.75 Glass (flint) 3.5 Wood (beech) 0.7-0.8 Gold 19.3 Wood (ebony) 1.1-1.2 Iron (cast) 7.21 Wood (elm) 0.66 Iron (wrought) 7.78 Wood (lignum-vitae) 1.3 Lead 11.4 Wood (oak) 0.7-1.0 Magnesium 1.74 Wood (pine) 0.56 Manganese 8.0 Wood (teak) 0.8	Chromium6.5	Slate2.1-2.8
Cobalt 8.6 Copper 8.77 Cork 0.24 Glass (crown) 2.5 Glass (flint) 3.5 Gold 19.3 Iron (cast) 7.21 Iron (wrought) 7.78 Lead 11.4 Magnesium 1.74 Manganese 8.0 Sulphur 2.07 Tin 7.3 Wood (ash) 0.75 Wood (beech) 0.70-0.8 Wood (ebony) 1.1-1.2 Wood (elm) 0.66 Wood (lignum-vitae) 1.3 Wood (oak) 0.7-1.0 Wood (pine) 0.56 Wood (teak) 0.8	Clay1.9	Sodium0.97
Copper 8.77 Cork 0.24 Glass (crown) 2.5 Glass (flint) 3.5 Gold 19.3 Iron (cast) 7.21 Iron (wrought) 7.78 Lead 11.4 Magnesium 1.74 Manganese 8.0 Tin 7.3 Tungsten 19.1 Wood (beech) 0.7-0.8 Wood (ebony) 1.1-1.2 Wood (elm) 0.66 Wood (lignum-vitae) 1.3 Wood (oak) 0.7-1.0 Wood (pine) 0.56 Wood (teak) 0.8	Coal1.36-1.4	Steel (mild)7.87
Cork 0.24 Tungsten 19.1 Glass (crown) 2.5 Wood (ash) 0.75 Glass (flint) 3.5 Wood (beech) 0.7-0.8 Gold 19.3 Wood (ebony) 1.1-1.2 Iron (cast) 7.21 Wood (elm) 0.66 Iron (wrought) 7.78 Wood (lignum-vitae) 1.3 Lead 11.4 Wood (oak) 0.7-1.0 Magnesium 1.74 Wood (pine) 0.56 Manganese 8.0 Wood (teak) 0.8	Cobalt8.6	Sulphur2.07
Glass (crown) 2.5 Wood (ash) 0.75 Glass (flint) 3.5 Wood (beech) 0.7-0.8 Gold 19.3 Wood (ebony) 1.1-1.2 Iron (cast) 7.21 Wood (elm) 0.66 Iron (wrought) 7.78 Wood (lignum-vitae) 1.3 Lead 11.4 Wood (oak) 0.7-1.0 Magnesium 1.74 Wood (pine) 0.56 Manganese 8.0 Wood (teak) 0.8	Copper8.77	Tin7.3
Glass (flint) 3.5 Wood (beech) 0.7-0.8 Gold 19.3 Wood (ebony) 1.1-1.2 Iron (cast) 7.21 Wood (elm) 0.66 Iron (wrought) 7.78 Wood (lignum-vitae) 1.3 Lead 11.4 Wood (oak) 0.7-1.0 Magnesium 1.74 Wood (pine) 0.56 Manganese 8.0 Wood (teak) 0.8	Cork0.24	Tungsten19.1
Gold 19.3 Wood (ebony) 1.1-1.2 Iron (cast) 7.21 Wood (elm) 0.66 Iron (wrought) 7.78 Wood (lignum-vitae) 1.3 Lead 11.4 Wood (oak) 0.7-1.0 Magnesium 1.74 Wood (pine) 0.56 Manganese 8.0 Wood (teak) 0.8	Glass (crown)2.5	Wood (ash) 0.75
Iron (cast)	Glass (flint)3.5	Wood (beech) 0.7-0.8
Iron (wrought) 7.78 Wood (lignum-vitae) 1.3 Lead 11.4 Wood (oak) 0.7-1.0 Magnesium 1.74 Wood (pine) 0.56 Manganese 8.0 Wood (teak) 0.8	Gold19.3	Wood (ebony)1.1-1.2
Lead 11.4 Wood (oak) 0.7-1.0 Magnesium 1.74 Wood (pine) 0.56 Manganese 8.0 Wood (teak) 0.8	Iron (cast)7.21	Wood (elm)0.66
Magnesium 1.74 Wood (pine) 0.56 Manganese 8.0 Wood (teak) 0.8	Iron (wrought)7.78	Wood (lignum-vitae) 1.3
Manganese	Lead11.4	Wood (oak)0.7-1.0
- · · · · · · · · · · · · · · · · · · ·	Magnesium 1.74	
Mercury	Manganese8.0	Wood (teak)0.8
	Mercury13.6	Zinc7.0

Greek Alphabet

Alpha	α	Iota	ι	Rho	ρ
Beta	β	Kappa	к	Sigma	Σ, σ
Gamma	γ	Lambda	λ	Tau	τ
Delta	Δ	Mu	μ	Upsilon	υ
Epsilon	3	Nu	ν	Phi	Φ, φ
Zeta	ζ	Xi	ξ	Kai	χ
Eta	η	Omicron	O	Psi	Ψ
Theta	θ	Pi	π	Omega	Ω, ω

MATHEMATICAL FORMULAE

Logarithms

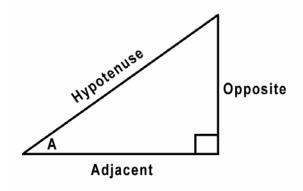
$$P=V^x$$
 or $x = log P/log V$

Algebra

1. Quadratic Equation

$$If ax^2 + bx + c = 0,$$

Then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$


Trigonometry

1. Basic Ratios

$$\sin A = \frac{\text{opposite}}{\text{hypotenuse}},$$

$$\cos A = \frac{\text{adjacent}}{\text{hypotenuse}},$$

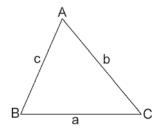
$$\tan A = \frac{\text{opposite}}{\text{adjacent}}$$

2. Pythagoras' Law (applies to right angle triangles)

$$opposite^2 + adjacent^2 = hypotenuse^2$$

3. Trigonometric Function Values

Sin is positive from 0° to 90° and positive from 90° to 180°


Cos is positive from 0° to 90° and negative from 90° to 180°

Tan is positive from 0° to 90° and negative from 90° to 180°

4. Solution of Triangles

a. Sine Law

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

b. Cosine Law

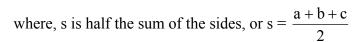
$$c^2 = a^2 + b^2 - 2$$
 ab Cos C

$$a^2 = b^2 + c^2 - 2 bc \cos A$$

$$b^2 = a^2 + c^2 - 2$$
 ac Cos B

Geometry

1. Areas of Triangles


a. All Triangles

Area =
$$\frac{\text{base} \times \text{perpendicular height}}{2}$$

Area =
$$\frac{bc \sin A}{2}$$
 = $\frac{ab \sin C}{2}$ = $\frac{ac \sin B}{2}$

and,

Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

b. Equilateral Triangles

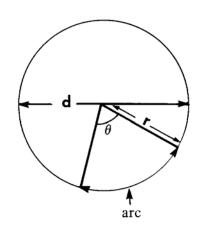
Area =
$$0.433 \times \text{side}^2$$

2. Circumference of a Circle

$$C = \pi d$$

3. Area of a Circle

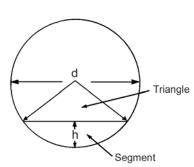
$$A = \pi r^2 = \frac{\text{circumference} \times r}{2} = \frac{\pi}{4} d^2 = 0.7854 d^2$$



4. Area of a Sector of a Circle

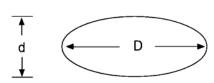
$$A = \frac{arc \times r}{2}$$

$$A = \frac{\theta^{\circ}}{360} \times \pi r^{2} \quad (\theta = \text{angle in degrees})$$

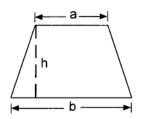

$$A = \frac{\theta^{\circ} r^2}{2}$$
 (\theta = angle in radians)

5. Area of a Segment of a Circle

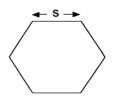
A = area of sector - area of triangle


Also approximate area =
$$\frac{4}{3} h^2 \sqrt{\frac{d}{h} - 0.608}$$

6. Ellipse


$$A = \frac{\pi}{4} Dd$$

Approx. circumference = $\pi \frac{(D+d)}{2}$


7. Area of Trapezoid

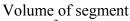
$$A = \left(\frac{a+b}{2}\right)h$$

8. Area of Hexagon

 $A = 2.6s^2$ where s is the length of one side

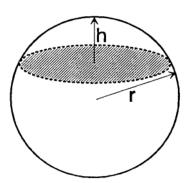
9. Area of Octagon

 $A = 4.83s^2$ where s is the length of one side



10. Sphere

Total surface area $A = 4\pi r^2$

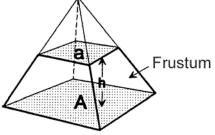

Surface area of segment $A_s = \pi dh$

Volume
$$V = \frac{4}{3}\pi r^3$$

$$V_s = \frac{\pi h^2}{3} (3r - h)$$

$$V_s = \frac{\pi \dot{h}}{6}(h^2 + 3a^2)$$
 where a = radius of segment base

11. Volume of a Cylinder

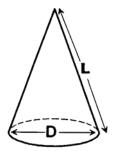

$$V = \frac{\pi}{4} d^2 L$$
 where L is cylinder length

12. Pyramid

Volume

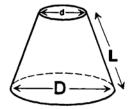
$$V = \frac{1}{3}$$
 base area x perpendicular height

Volume of frustum



$$V_F = \frac{h}{3}(A + a + \sqrt{Aa})$$
 where h is the perpendicular height, A and a are areas as shown

13. Cone


Area of curved surface of cone:

$$A = \frac{\pi DL}{2}$$

Area of curved surface of frustum

$$A_F = \frac{\pi (D+d)L}{2}$$

Volume of cone:

$$V = \frac{base\ area \times perpendicular\ height}{3}$$

Volume of frustum:

$$V_{\scriptscriptstyle F} = \frac{perpendicular\,height\times\pi\;(R^2+r^2+Rr)}{3}$$

APPLIED MECHANICS

 $\begin{tabular}{ll} \textbf{Velocity} & - & \text{vector property equal to} & \frac{\text{displacement}}{\text{time}} \\ \end{tabular}$

In SI the basic unit is $\frac{m}{s}$, in Imperial $\frac{ft}{s}$

Other common units are $\frac{km}{h}$, $\frac{mi}{h}$

Conversions: $1\frac{m}{s} = 3.28 \frac{ft}{s}$

$$1\frac{\text{km}}{\text{h}} = 0.621\frac{\text{mi}}{\text{h}}$$

Speed of sound in dry air is 331 $\frac{m}{s}$ at 0°C and increases by about 0.61 $\frac{m}{s}$ for each °C rise

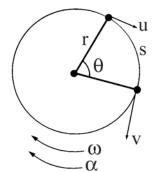
Speed of light in vacuum equals 3 x $10^8 \frac{m}{s}$

In SI the basic unit is $\frac{m}{s^2}$, in Imperial $\frac{ft}{s^2}$

Conversion: $1\frac{m}{s^2} = 3.28 \frac{ft}{s^2}$

Acceleration due to gravity, symbol "g", is 9.81 $\frac{\text{m}}{\text{s}^2}$ or 32.2 $\frac{\text{ft}}{\text{s}^2}$

Linear Velocity and Acceleration


$$v = u + at$$

$$s = \left(\frac{v + u}{2}\right)t$$

$$s = ut + \frac{1}{2} at^2$$

$$v^2 = u^2 + \frac{2}{2}$$
 as

Angular Velocity and Acceleration

$$\theta$$
 angular displacement (radians)

 ω angular velocity (radians/s); ω_1 = initial, ω_2 = final

α angular acceleration (radians/s²)

$$\omega_2 = \omega_1 + \alpha t$$

$$\theta = \frac{\omega_1 + \omega_2}{2} \times t$$

$$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$$

$$\omega_2^2 = \omega_1^2 + 2 \alpha \theta$$

linear displacement,

linear velocity,

linear, or tangential acceleration, $a_T = r \alpha$

 $= r \theta$

 $= r \omega$

radians/sec = $2\pi \text{rpm}/60$

Tangential, Centripetal and Total Acceleration

Tangential acceleration a_T is due to angular acceleration α

$$a_T = r\alpha$$

Centripetal (Centrifugal) acceleration a_c is due to change in direction only

$$a_c = v^2/r = r \omega^2$$

Total acceleration, a, of a rotating point experiencing angular acceleration is the vector sum of a_T and a_c

$$a = a_T + a_c$$

Force

In SI the unit of force is the newton, N, defined as a $\frac{kg\ m}{s^2}$

In Imperial the unit of force is the pound lb

Conversion:
$$9.81 \text{ N} = 2.2 \text{ lb}$$

Weight

In SI weight can be calculated from

Weight =
$$F = mg$$
, where $g = 9.81 \text{ m/s}^2$

In Imperial, the mass of an object (rarely used), in slugs, can be calculated from the known weight in pounds

$$m = \frac{Weight}{g} \qquad g = 32.2 \frac{ft}{s^2}$$

Newton's Second Law of Motion

An unbalanced force F will cause an object of mass m to accelerate a, according to:

$$F = ma$$
 (Imperial $F = \frac{W}{g}$ a, where w is weight)

Torque Equation

Torque = force x radius

 $T = I \alpha$ where T is the acceleration torque in Nm, I is the moment of inertia in kg m² and α is the angular acceleration in radians/s²

Momentum

Vector quantity, symbol p,

$$p = mv$$
 (Imperial $p = \frac{W}{g}$ v, where w is weight)

in SI unit is
$$\frac{kg\;m}{s}$$

Work

$$W = F s$$

In SI the unit of work is the joule, J, or kilojoule, kJ

$$1 J = 1 Nm$$

In Imperial the unit of work is the ft-lb

Kinetic Energy

Energy due to motion

$$E_k = \frac{1}{2}mv^2$$

In Imperial this is usually expressed as $E_k = \frac{W}{2g}v^2$ where w is weight

Kinetic Energy of Rotation

$$E_R = \frac{1}{2}mk^2\omega^2$$
 where k is radius of gyration, ω is angular velocity in rad/s

or

$$E_R = \frac{1}{2}I\omega^2$$
 where $I = mk^2$ is the moment of inertia

Centripetal (Centrifugal) Force

$$F_C = \frac{mv^2}{r}$$
 where r is the radius

or

$$F_C = m \omega^2 r$$
 where ω is angular velocity in rad/s

Potential Energy

Energy due to position in a force field, such as gravity

$$E_p = m g h$$

In Imperial this is usually expressed E_p = w h where w is weight, and h is height above some specified datum

Thermal Energy

In SI the common units of thermal energy are J, and kJ, (and kJ/kg for specific quantities)

In Imperial, the units of thermal energy are British Thermal Units (Btu)

Conversions:
$$1 \text{ Btu} = 1055 \text{ J}$$

Electrical Energy

In SI the units of electrical energy are J, kJ and kilowatt hours kWh. In Imperial, the unit of electrical energy is the kWh

Conversions:
$$1 \text{ kWh} = 3600 \text{ kJ}$$

$$1 \text{ kWh} = 3412 \text{ Btu} = 2.66 \times 10^6 \text{ ft-lb}$$

Power

In SI the unit is the Watt W (or kW)

$$1 W = 1 \frac{J}{S}$$

In Imperial, the units are:

Mechanical Power -
$$\frac{\text{ft} - \text{lb}}{\text{S}}$$
, horsepower h.p.

Thermal Power -
$$\frac{Btu}{s}$$

Conversions:
$$746 \text{ W} = 1 \text{ h.p.}$$

1 h.p. = 550
$$\frac{\text{ft} - \text{lb}}{\text{s}}$$

$$1 \text{ kW} = 0.948 \frac{\text{Btu}}{\text{s}}$$

Pressure

A vector quantity, force per unit area

In SI the basic units of pressure are pascals Pa and kPa

1 Pa = 1
$$\frac{N}{m^2}$$

In Imperial, the basic unit is the pound per square inch, psi

Atmospheric Pressure

At sea level atmospheric pressure equals 101.3 kPa or 14.7 psi

Pressure Conversions

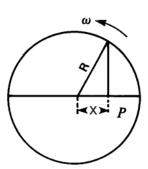
$$1 \text{ psi} = 6.895 \text{ kPa}$$

Pressure may be expressed in standard units, or in units of static fluid head, in both SI and Imperial systems

Common equivalencies are:

1 kPa = 0.294 in. mercury = 7.5 mm mercury
1 kPa = 4.02 in. water = 102 mm water
1 psi = 2.03 in. mercury = 51.7 mm mercury
1 psi = 27.7 in. water = 703 mm water
1 m
$$H_2O = 9.81$$
 kPa

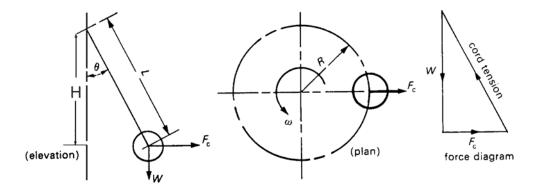
Other pressure unit conversions:


Simple Harmonic Motion

Velocity of P =
$$\omega \sqrt{R^2 - x^2} \frac{m}{s}$$

Acceleration of
$$P = \omega^2 \times m/s^2$$

The period or time of a complete oscillation = $\frac{2\pi}{\omega}$ seconds General formula for the period of S.H.M.


$$T = 2\pi \sqrt{\frac{\text{displacement}}{\text{acceleration}}}$$

Simple Pendulum

$$T = 2\pi \ \sqrt{\frac{L}{g}}$$

$$T = \text{period or time in seconds for a double swing}$$

$$L = \text{length in metres}$$

The Conical Pendulum

$$R/H = \tan \theta = F_c/W = \omega^2 R/g$$

Lifting Machines

$$W = load lifted,$$
 $F = force applied$

$$M.A. = \frac{load}{effort} = \frac{W}{F}$$

V.R. (velocity ratio) =
$$\frac{\text{effort distance}}{\text{load distance}}$$

$$\eta$$
 = efficiency = $\frac{M.A.}{V.R.}$

1. Lifting Blocks

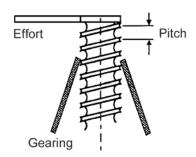
V.R. = number of rope strands supporting the load block

2. Wheel & Differential Axle

Velocity ratio =
$$\frac{2\pi R}{\frac{2\pi(r-r_1)}{2}}$$

= $\frac{2R}{r-r_1}\frac{2R}{\frac{d}{d-d_1}}$
Velocity ratio = $\frac{2D}{\frac{d}{d-d_1}}$

Or, using diameters instead of radii,



3. Inclined Plane

$$V.R. = \frac{length}{height}$$

4. Screw Jack

$$V.R. = \frac{circumference of leverage}{pitch of thread}$$

Indicated Power

I.P. = $P_m A L N$ where I.P. is power in W, P_m is mean or "average" effective pressure in Pa, A is piston area in m^2 , L is length of stroke in m and N is number of power strokes per second

Brake Power

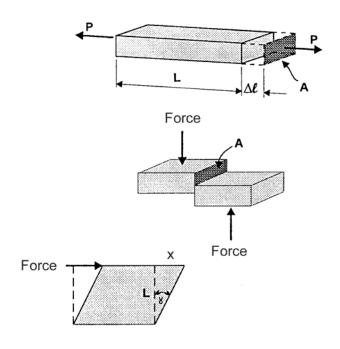
B.P. = $T\omega$ where B.P. is brake power in W, T is torque in Nm and ω is angular velocity in radian/second

STRESS, STRAIN and MODULUS OF ELASTICITY

Direct stress =
$$\frac{\text{load}}{\text{area}} = \frac{P}{A}$$

Direct strain =
$$\frac{\text{extension}}{\text{original length}} = \frac{\Delta \ell}{L}$$

Modulus of elasticity


$$E = \frac{\text{direct stress}}{\text{direct strain}} = \frac{P/A}{\Delta \ell / L} = \frac{PL}{A\Delta \ell}$$

Shear stress
$$\tau = \frac{\text{force}}{\text{area under shear}}$$

Shear strain =
$$\frac{x}{L}$$

Modulus of rigidity

$$G = \frac{\text{shear stress}}{\text{shear strain}}$$

General Torsion Equation (Shafts of circular cross-section)

$$\frac{T}{J} = \frac{\tau}{r} = \frac{G \; \theta}{L}$$

1. For Solid Shaft

$$J = \frac{\pi}{2} r^4 = \frac{\pi d^4}{32}$$

T = torque or twisting moment in newton metres

= polar second moment of area of cross-section

about shaft axis.

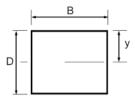
 τ = shear stress at outer fibres in pascals

r = radius of shaft in metres

2. For Hollow Shaft

$$J = \frac{\pi}{2} (r_1^4 - r_2^4)$$

$$2^{(r_1 - r_2)}$$


$$= \frac{\pi}{32} (d_1^4 - d_2^4)$$

G = modulus of rigidity in pascals

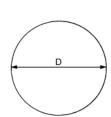
Fundamental Bending Equation

$$\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$$

1. For Rectangle

$$I = \frac{BD^3}{12}$$

M = external bending moment in newton metres


I = second moment of area in m⁴

 σ = bending stress at outer fibres in pascals

y = distance from centroid to outer fibres in metres

E = modulus of elasticity in pascals R = radius of curative in metres

2. For Solid Shaft

$$I = \frac{\pi D^4}{64}$$

THERMODYNAMICS

The Fundamental Energy Equation

Heat Supplied = Increase in Internal Energy + Work Done $Q = \Delta U + WD$

Temperature Scales

$$^{\circ}$$
C = $\frac{5}{9}$ ($^{\circ}$ F - 32)

$$^{\circ}F = \frac{9}{5} ^{\circ}C + 32$$

$$^{\circ}$$
R = $^{\circ}$ F + 460 (R Rankine) K = $^{\circ}$ C + 273 (K Kelvin)

Sensible Heat Equation

Q mcΔT

m is mass

is specific heat

 ΔT is temperature change

Latent Heat

Latent heat of fusion of ice = 335 kJ/kgLatent heat of steam from and at 100° C = 2257 kJ/kg1 tonne of refrigeration = 335 000 kJ/day

= 233 kJ/min

Gas Laws

1. Boyle's Law

When gas temperature is constant

constant or

 $P_1V_1 = P_2V_2$

where P is absolute pressure and V is volume

2. Charles' Law

When gas pressure is constant, $\frac{V}{T} = constant$

or $\frac{V_1}{T_1} = \frac{V_2}{T_2}$, where V is volume and T is absolute temperature

3. Gay-Lussac's Law

When gas volume is constant, $\frac{P}{T} = constant$

Or $\frac{P_1}{T_1} = \frac{P_2}{T_2}$, where P is absolute pressure and T is absolute temperature

4. General Gas Law

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} = constant$$

PV = mRT where P = absolute pressure (kPa)

 $V = volume (m^3)$

T = absolute temp (K)

m = mass(kg)

R = characteristic constant (kJ/kgK) = Cp - Cv

Also

 $PV = nR_0T$ where P = absolute pressure (kPa)

 $V = volume (m^3)$

T = absolute temperature K

N =the number of kmoles of gas

 R_o = the universal gas constant 8.314 kJ/kmol/K

SPECIFIC HEATS OF GASES

GAS	Specific Heat at Constant Pressure kJ/kgK or kJ/kg °C	Specific Heat at Constant Volume kJ/kgK or kJ/kg °C	Ratio of Specific Heats γ = c _p /c _v
Air	1.005	0.718	1.40
Ammonia	2.060	1.561	1.32
Carbon Dioxide	0.825	0.630	1.31
Carbon Monoxide	1.051	0.751	1.40
Helium	5.234	3.153	1.66
Hydrogen	14.235	10.096	1.41
Hydrogen Sulphide	1.105	0.85	1.30
Methane	2.177	1.675	1.30
Nitrogen	1.043	0.745	1.40
Oxygen	0.913	0.652	1.40
Sulphur Dioxide	0.632	0.451	1.40

Efficiency of Heat Engines

Carnot Cycle $\eta = \frac{T_1 - T_2}{T_1}$ where T_1 and T_2 are absolute temperatures of heat source and sink

Air Standard Efficiencies

1. Spark Ignition Gas and Oil Engines (Constant Volume Cycle or Otto Cycle)

$$\eta = 1 - \frac{1}{r_v^{(\gamma - 1)}}$$
 where $r_V = \text{compression ratio} = \frac{\text{cylinder volume}}{\text{clearance volume}}$

$$\gamma = \frac{\text{specific heat (constant pressure)}}{\text{specific heat (constant volume)}}$$

2. Diesel Cycle

$$\eta = 1 - \frac{(R^{\gamma} - 1)}{r_v^{\gamma-1} \gamma(R - 1)}$$
 where r = ratio of compression
$$R = \text{ratio of cut-off volume to clearance volume}$$

3. High Speed Diesel (Dual-Combustion) Cycle

$$\eta = 1 - \frac{k\beta^{\gamma} - 1}{r_v^{\gamma - 1} \left[(k - 1) + \gamma k(\beta - 1) \right]}$$

where
$$r_v = \frac{\text{cylinder volume}}{\text{clearance volume}}$$

 $k = \frac{absolute\ pressue\ at\ end\ of\ constant\ V\ heating\ (combustion)}{absolute\ pressue\ at\ beginning\ of\ constant\ V\ combustion}$

$$\beta = \frac{\text{volume at end of constant P heating (combustion)}}{\text{clearance volume}}$$

4. Gas Turbines (Constant Pressure or Brayton Cycle)

$$\eta = 1 - \frac{1}{r_p^{\left(\frac{\gamma - 1}{\gamma}\right)}}$$

where r_p = pressure ratio = $\frac{\text{compressor discharge pressure}}{\text{compressor intake pressure}}$

THERMODYNAMIC EQUATIONS FOR PERFECT GASES (Non_Flow Processes)

A CONTRACTOR						
Change In Entropy	S ₂ -S ₁ k3/K	$mcv \ln \frac{T_2}{T_1}$	$mc_P \ln \frac{T_2}{T_I}$	$mR \ln \frac{P_1}{P_2}$	0	$mc_n \ln \frac{T_2}{T_1}$
Change In Enthalpy	$H_2 - H_1$	$mc_{\nu}(T_2 - T_I)$ $mc_{\rho}(T_2 - T_I)$ $mc_{\nu} \ln \frac{T_2}{T_I}$	$mc_P (T_2 - T_I)$	0	тср (Т2-Т1)	$mc_{\bullet}\left(T_{2}-T_{1}\right) mc_{\Phi}\left(T_{2}-T_{1}\right) mc_{\pi} ln \frac{T_{2}}{T_{1}}$
Change In Internal	Energy $U_2 - U_I$ kJ	$mc_{\nu}(T_2 - \overline{T}_I)$	$P(V_2 - V_I)$ $mcv(T_2 - T_I)$ $mcp(T_2 - T_I)$	0	$mc_{V}\left(T_{2}-T_{1} ight)$ $mc_{P}\left(T_{2}-T_{1} ight)$	$mc_{\nu}\left(T_{2}-T_{l}\right)$
Work Done	1 W2 kJ	0		$WD = PV \ln \frac{V_1}{V_1}$	$\frac{P_1V_1 - P_2V_2}{\gamma - 1}$	$\frac{P_1V_1 - P_2V_2}{n - 1}$
Heat Added	,kJ *	$mc_{\nu}\left(T_{2}-T_{1}\right)$	$mc_P \left(T_2 - T_I\right)$	$mRT \ln \frac{P_I}{P_2} \text{ WD=PVIn} \frac{\text{V}_2}{\text{V}_1}$	0	$\begin{pmatrix} V_2 \\ \overline{V_I} \end{pmatrix} mc_n \left(T_2 - T_1 \right)$
nips	A-L		$\frac{T_1}{T_2} = \frac{V_1}{V_2}$		$\frac{\gamma \cdot I}{T_2} = \left(\frac{V_2}{V_I}\right)$	$\frac{T_j}{T_2} = \left(\frac{T_j}{T_j} \right)$
P-V-T Relationships	T-P	$\frac{T_i}{T_2} = \frac{P_i}{P_2}$			$\frac{T_1}{\overline{T}_2} = \left(\frac{P_1}{P_2}\right) \frac{T_1}{\overline{T}_2} = \left(\frac{P_2}{P_2}\right) \frac{T_2}{\overline{T}_2}$	$\left(\frac{V_2}{V_I}\right) \frac{T_I}{T_2} = \left(\frac{P_I}{P_2}\right)$
P-V	A-A			$\frac{P}{P_2} = \frac{V_2}{V_1}$	$\frac{P_1}{P_2} = \left(\frac{V_2}{V_1}\right) \frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right) \frac{T_2}{T_2} = \left(\frac{V_2}{V_1}\right) \frac{T_2}{V_2} = \left(\frac{V_2}{V_1}\right) \frac{T_2}{V_1} = \left(\frac{V_2}{V_1}\right) \frac{T_2}{V_2} = \left(\frac{V_2}{V_1}\right) \frac{T_2}{V_1} = \left(\frac{V_2}{V_1}\right) T_$	$\frac{P_1}{P_2} = \left(\frac{V_2}{V_1}\right)^n$
Value of	ĸ.	8	0	1	~	и
Name of	Process	Constant Volume V = Const.	Constant Pressure P = Const.	Isothermal $T=\mathrm{Const.}$	Isentropic* S = Const.	Polytropic $PV^{\prime\prime} = \text{Const.}$

*Can be used for reversible adiabatic processes

c_p = Specific heat at constant pressure, kJ/kgK c_v= Specific heat at constant volume, kJ/kgK

 $c_n = \text{Specific heat for a polytropic process} = c_v \left(\frac{\gamma - n}{1 - n}\right) kJ/kgK$ H = Enthalpy, kJ

 $S = Entropy, kJ/K \\ T = Absolute temperature, K = 273 + {}^{\circ}C$ R = Gas Constant, kJ/kgK

U = Internal energy, kJ

m = Mass of gas, kg $V = Volume, m^3$

n = Polytropic exponent P = Absolute Pressure, kPa $\gamma = Isentropic exponent, c_p/c_v$

Heat Transfer by Conduction

$$Q = \frac{\lambda A t \Delta T}{d}$$

where Q = heat transferred in joules

 λ = thermal conductivity or coefficient of heat

transfer in
$$\frac{J \times m}{m^2 \times s \times {}^{\circ}C}$$
 or $\frac{W}{m \times {}^{\circ}C}$

 $A = area in m^2$

t = time in seconds

 ΔT = temperature difference between surfaces in $^{\circ}C$

d =thickness of layer in m

Heat transfer by conduction through a cylindrical wall:

$$Q = \frac{2\pi\lambda t\Delta TL}{1n\left(\frac{D}{d}\right)}$$

Where D = outside diameter

d=inside diameter

L = length in metres

 $\lambda =$ thermal conductivity

t = time(seconds)

 $\Delta T = temperature difference (degrees C)$

COEFFICIENTS OF THERMAL CONDUCTIVITY

Material	Coefficient of Thermal Conductivity W/m °C
Air	0.025
Aluminum	206
Brass	104
Brick	0.6
Concrete	0.85
Copper	380
Cork	0.043
Felt	0.038
Glass	1.0
Glass, fibre	0.04
Iron, cast	70
Plastic, cellular	0.04
Steel	60
Wood	0.15
Wallboard, paper	0.076
= =	

Thermal Expansion of Solids

```
Increase in length = L \alpha (T_2 - T_1) where L = \text{original length} \alpha = \text{coefficient of linear expansion} (T_2 - T_1) = \text{rise in temperature}

Increase in volume = V \beta (T_2 - T_1)

Where V = \text{original volume} \beta = \text{coefficient of volumetric expansion} (T_2 - T_1) = \text{rise in temperature}

coefficient of volumetric expansion = \text{coefficient of linear expansion x 3} \beta = 3\alpha
```


SPECIFIC HEAT and LINEAR EXPANSION OF SOLIDS

Solid	Mean Specific Heat between 0°C and 100°C kJ/kgK or kJ/kg °C	Coefficient of Linear Expansion between 0°C and 100°C (Multiply by 10 ⁻⁶)	Solid	Mean Specific Heat between 0°C and 100°C kJ/kgK or kJ/kg °C	Coefficient of Linear Expansion between 0°C and 100°C (Multiply by 10 ⁻⁶)
Aluminum	0.909	23.8	Iron (cast)	0.544	10.4
Antimony	0.209	17.5	Iron (wrought)	0.465	12.0
Bismuth	0.125	12.4	Lead	0.131	29.0
Brass	0.383	18.4	Nickel	0.452	13.0
Carbon	0.795	7.9	Platinum	0.134	8.6
Cobalt	0.402	12.3	Silicon	0.741	7.8
Copper	0.388	16.5	Silver	0.235	19.5
Glass	0.896	9.0	Steel (mild)	0.494	12.0
Gold	0.130	14.2	Tin	0.230	26.7
Ice	2.135	50.4	Zinc	0.389	16.5
(between -20°C and 0°C)					

SPECIFIC HEAT and VOLUME EXPANSION FOR LIQUIDS

Liquid	Specific Heat (at 20°C) kJ/kgK or kJ/kg°C	Coefficient of Volume Expansion (Multiply by 10 ⁻⁴)	Liquid	Specific Heat (at 20°) kJ/kgK or kJ/kg°C	Coefficient of Volume Expansion (Multiply by 10 ⁻⁴)
Alcohol (ethyl)	2.470	11.0	Olive Oil	1.633	
Ammonia	0.473		Petroleum	2.135	
Benzine	1.738	12.4	Gasoline	2.093	12.0
Carbon Dioxide	3.643	1.82	Turpentine	1.800	9.4
Mercury	0.139	1.80	Water	4.183	3.7

Chemical Heating Value of a Fuel

Chemical Heating Value MJ per kg of fuel = 33.7 C + 144 $\left(H_2 - \frac{O_2}{8}\right)$ + 9.3 S

C is the mass of carbon per kg of fuel

H₂ is the mass of hydrogen per kg of fuel

 O_2 is the mass of oxygen per kg of fuel

S is the mass of sulphur per kg of fuel

Theoretical (Stoichiometric) Air Required to Burn Fuel

Air (kg per kg of fuel) =
$$\left[\frac{8}{3}C + 8\left(H_2 - \frac{O_2}{8}\right) + S\right] \frac{100}{23}$$

Air Supplied from Analysis of Flue Gases

Air in kg per kg of fuel =
$$\frac{N_2}{33 (CO_2 + CO)} \times C$$

C is the percentage of carbon in fuel by mass

N₂ is the percentage of nitrogen in flue gas by volume

 ${
m CO_2}\,\,$ is the percentage of carbon dioxide in flue gas by volume

CO is the percentage of carbon monoxide in flue gas by volume

Boiler Formulae

Equivalent evaporation =
$$\frac{\dot{m}_s (h_1 - h_2)}{2257 \text{ kJ/kg}}$$

Factor of evaporation =
$$\frac{(h_1 - h_2)}{2257 \text{ kJ/kg}}$$

Boiler efficiency =
$$\frac{\dot{m}_s (h_1 - h_2)}{\dot{m}_f \times \text{calorific value of fuel}}$$

where \dot{m}_s = mass flow rate of steam

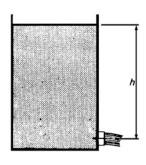
 h_1 = enthalpy of steam produced in boiler

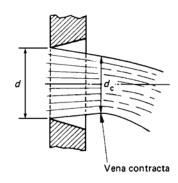
 h_2 = enthalpy of feedwater to boiler

 $\dot{m}_{\rm f} = \text{mass flow rate of fuel}$

FLUID MECHANICS

Discharge from an Orifice


Let A = cross-sectional area of the orifice = $(\pi/4)d^2$


and A_c = cross-sectional area of the jet at the vena contracta = $(\pi/4) d_c^2$

then $A_c = C_c A$

or
$$C_c = \frac{A_c}{A} = \left(\frac{d_c}{d}\right)^2$$

where C_c is the coefficient of contraction

At the vena contracta, the volumetric flow rate Q of the fluid is given by

 $Q = area of the jet at the vena contracta \times actual velocity$

$$= A_c v$$

or Q =
$$C_c A C_v \sqrt{2gh}$$

The coefficients of contraction and velocity are combined to give the coefficient of discharge, C_d

i.e.
$$C_d = C_c C_v$$

and $Q = C_d A \sqrt{2gh}$

Typically, values for C_d vary between 0.6 and 0.65

Circular orifice: $Q = 0.62 \text{ A} \sqrt{2gh}$

Where $Q = flow (m^3/s)$ $A = area (m^2)$ h = head (m)

Rectangular notch: Q = 0.62 (B x H) $\frac{2}{3}\sqrt{2gh}$

Where B = breadth (m) H = head (m above sill)

Triangular Right Angled Notch: $Q = 2.635 \text{ H}^{5/2}$

Where H = head (m above sill)

Bernoulli's Theory

$$H = h + \frac{P}{w} + \frac{v^2}{2g}$$

H = total head (metres) w = force of gravity on 1 m³ of fluid (N)

h = height above datum level (metres) v = velocity of water (metres per second)

 $P = pressure (N/m^2 or Pa)$

Loss of Head in Pipes Due to Friction

Loss of head in metres = $f\frac{L}{d} \frac{v^2}{2g}$

L = length in metres v = velocity of flow in metres per second

d = diameter in metres f = constant value of 0.01 in large pipes to 0.02 in small pipes

Note: This equation is expressed in some textbooks as

Loss = $4f\frac{L}{d}\frac{\dot{V}^2}{2g}$ where the f values range from 0.0025 to 0.005

Pump Calculations

$$Q_2 = Q_1 \times \frac{n_2}{n_1} \times \frac{D_2}{D_1}$$

$$\mathbf{h}_1 = \mathbf{h}_2 \times \left(\frac{\mathbf{n}_2}{\mathbf{n}_1}\right)^2 \times \left(\frac{\mathbf{D}_2}{\mathbf{D}_1}\right)^2$$

$$kW_2 = kW_1 \times \left(\frac{n_2}{n_1}\right)^3 \times \left(\frac{D_2}{D_1}\right)^3$$

where $\eta_1 = \eta_2$

kW = pump power required

h = head developed by pump, m

D=impeller diameter, mm

 $\eta = \text{pump efficiency}$

n = pump speed in rpm

 $Q\!=\!quantity\,pumped\,in\,\ell/min$

Actual Pipe Dimensions

Nom. pipe size imp. units	Equiv. nom. pipe size m m	Out- side dia- meter	SCHEDULE													
			10	20	30	Std. wall	40	60	Extra Strong	80	100	120	140	160	Dou- ble Extra Strong	
1/2	12.70	21.34				2.77	2.77		3.73	3.73				4.75	7.47	
					***	1.26	1.26		1.61	1.61				1.92	2.53	
3/4	19.05	26.67	***	***	***	2.87	2.87		3.91	3.91			***	5.54	7.82	
		State of				1.67	1.67		2.17	2.17				4.20	5.41	
1	25.4	33.40				3.38	3.38		4.55	4.55				6.35	9.70	
			***	***	***	2.48	2.48		3.21	3.21				4.20	5.41	
1-1/4	31.75	42.16				3.56	3.56	***	4.85	4.85				6.35	9.70	
		2000	***	***	***	3.36	3.36	***	4.43	4.43			***	5.57	7.70	
1-1/2	38.10	48.26			****	3.68	3.68		5.08	5.08				7.14	10.16	
					***	4.02	4.02		5.37	5.37	***			7.18	9.47	
2	50.80	60.33				3.91	3.91		5.54	5.54				8.71	11.07	
					***	5.39	5.39		7.42	7.42				11.00	13.35	
2-1/2	63.50	73.03	***			5.16	5.16	***	7.01	7.01				9.53	14.02	
	70.00			***		8.56	8.56	***	11.32	11.32	***			14.79	20.25	
3	76.20	88.90				5.49	5.49		7.62	7.62			***	11.13	15.24	
See Park			***			11.20	11.20	***	15.15	15.15			***	21.16	27.47	
3-1/2	88.90	101.60				5.74	5.74		8.08	8.08					16.15	
		-	***	***	***	13.46	13.46		18.49	18.49			***	***	33.77	
4	101.60	114.30	***		***	6.02	6.02		8.56	8.56		11.13		13.49	17.12	
5	107.00				***	15.95	15.95		22.14	22.14		28.10	***	33.27	40.70	
	127.00	141.30				6.55	6.55		9.53	9.53		12.70		15.88	19.05	
	150.40	100.00	***	***	***	21.61	21.61		30.71	30.71		39.97		48.71	56.98	
6	152.40	168.28	***	***		7.11	7.11		10.97	10.97		14.27		18.24	21.95	
	200 00	240.00	***		7.04	28.04	28.04		42.23	42.23		53.78		66.95	78.57	
8	203,20	219.08		6.35	7.04	8.18	8.18	10.31	12.70	12.70	15.06	18.24	20.62	23.01	22.23	
	250 40	272.05	***	33.05	36.51	42.20	42.20	52.68	64.13	64.13	75.18	89.61	100.15	110.39	-	
10	250.40	273.05	***	6.35	7.80	9.27	9.27	12.70	12.70	15.06	18.24	21.41	25.40	28.58		
	204.00	222.05	***	41.44	50.61	59.83	59.83	80.91	80.91	95.08	113.17	131.84	153.90	170.93		
	304.80	323.85	***	6.35	8.38	9.53	10.31	14.27	12.70	17.45	21.41	25,40	28.58	33.32		
14	255 60	355.60	6.35	7.92	9.53	9.35	79.16	108.13	96.69	130.82	158.44	185.47 27.76	206.45	236.88 35.71		
	355,60	333.60	54.26	100 Central Processing	80.65	80.65	100100000000000000000000000000000000000	14/15/03/07/096	10 (4 E E E E E E E E E E E E E E E E E E	0.0000000000000000000000000000000000000	17.912.502.503	198299090	1420 00 122	1926 C.33 T. O. O.		
16	406 40	406.40	6.35	7.92	9.53	9.53	93.66	125.50	12.70	156.86	193.22	30.94	251.59 36.53	279.52	***	
	400.40	400.40	2013/2437K	33747537774	2100231800	1927/01/05/01/01/01	DINTERPRET	S000000000	1000000000	KINSKY IKP I	250500000000000000000000000000000000000	1,029(80,050)	PARTY PARTY	40.46		
18	457.20	457.20	62.15	77.39	92.49	92.49	14.27		122.33	201.69	243.62			362.27	***	
	457.20	457.20	70.04	354239700	121.28	CONTRACTOR	15/4/52/00/00	19.05	12.70		29.36	34.93	39.67	45.24	***	
20	508.00	508.00	6.35	9.53	12.70	9.53	150.06	-	138.12	252.37	307.36		44.45	455.98	-	
	300.00	300.00	1999999999	1015 (Sept. 2015)	E00078000000	3 4 (2) (2) (3)	C19500 (00 20 20 20 20 20 20 20 20 20 20 20 20 2	0.009000050	100000000000000000000000000000000000000	10.737663760	10007A107555	38.10	14080MGG	49.99		
24	600 60	609.60	6.35	9.53	153.90	9.53	17.45	245.94	153.90	308.71	378.52	46.02	504.15	59.51	-	
	003.60	00,600	0350990540	19000000000	F553200079	CONTRACTOR OF THE PARTY OF THE	PERSONAL PROPERTY.	272190006450	1666-2007/25/2011	III-COSTOPPING	94279F53550N	NAMES OF TAXABLE	F17 252 27 1 F17 1	NO. 2 VOTE 2011		
30	762.00	762.00	93.72	12.70	208.10 15.88	9.53		341.33	12.70	438.02	543.02		The second second	800.99	The state of	
				1 1 / / 1	13.00	25 . 3.3	***	***	1 / / 1	www	***	***	***	***	***	

Note: The upper figures in each square demote wall thickness in mm and the lower figures denote mass per meter, in kilograms.

ELECTRICITY

Ohm's Law

$$I = \frac{E}{R}$$

or
$$E = IR$$

where
$$I = current (amperes)$$

R = resistance (ohms)

Conductor Resistivity

$$R = \rho \frac{L}{a}$$

where
$$\rho$$
 = specific resistance (or resistivity) (ohm metres, $\Omega \cdot m$)

$$\dot{L} = length (metres)$$

Temperature correction

$$R_t = R_o (1 + \alpha t)$$

where
$$R_o$$
 = resistance at $0^{\circ}C(\Omega)$

$$R_t = \text{resistance at } t^oC(\Omega)$$

$$\alpha$$
 = temperature coefficient which has an average value for copper of 0.004 28 (Ω/Ω°C)

$$R_2 = R_1 \frac{(1+\alpha t_2)}{(1+\alpha t_1)}$$

where
$$R_1$$
 = resistance at $t_1(\Omega)$

$$R_2$$
 = resistance at $t_2(\Omega)$

α Values	Ω/Ω°C
copper	0.00428
platinum	0.00385
nickel	0.00672
tungsten	0.0045
aluminum	0.0040

Dynamo Formulae

Average e.m.f. =
$$\frac{\phi ZNP}{b60}$$

where N = rotational speed of armature in r/min

 ϕ = flux per pole in webers

P = total number of field poles

Z = total number of armature conductors

b = number of armature paths,

for wave winding b = 2

for lap winding b = P

Generator Terminal volts = $E_G - I_a R_a$

Motor Terminal volts = $E_B + I_a R_a$

where E_G = generated e.m.f.

 E_B = generated back e.m.f.

 I_a = armature current

 R_a = armature resistance

Alternating Current

R.M.S. value of sine curve = 0.707 maximum value

Mean value of sine curve = 0.637 maximum value

Form factor of sinusoidal = $\frac{\text{R.M.S. value}}{\text{Mean value}} = \frac{0.707}{0.637} = 1.11$

Frequency of alternator = $\frac{pN}{60}$ cycles per second

Where p = number of pairs of poles

N = rotational speed in r/min

Instantaneous value = Maximum value × Sin (2π ft)

Note: calculator must be in radian mode

Slip of Induction Motor

$$\frac{\text{Slip speed of field - speed of rotor}}{\text{Speed of field}} \, \times \, 100$$

Inductive Reactance

Reactance of AC circuit (X) = $2\pi fL$ ohms

where L = inductance of circuit (henries)

Inductance of an iron cored solenoid = $\frac{1.256T^2\mu A}{L \times 10^8}$ henries

where T = turns on coil

 μ = magnetic permeablility of core A = area of core (square centimetres)

L = length (centimetres)

Capacitance Reactance

Capacitance reactance of AC circuit = $\frac{1}{2\pi fC}$ ohms

where
$$C = \text{capacitance (farads)}$$

Total reactance =
$$\left(2\pi fL - \frac{1}{2\pi fC}\right)$$
ohms

Impedence (Z) =
$$\sqrt{(\text{resistance})^2 + (\text{reactance})^2}$$

$$= \sqrt{R^2 + (2\pi fL - \frac{1}{2\pi fC})^2 \text{ ohms}}$$

Current in AC Circuit

$$Current = \frac{impressed\ volts}{impedance}$$

Force on conductors:

The force produced = BIL

Where B = the flux density in teslas (webers $/ m^2$)

I = current

L =the total *effective* length of conductors

Power Factor

p.f. =
$$\frac{\text{true watts}}{\text{volts x amperes}}$$

also p.f. = $\cos \Phi$, where Φ is the angle of lag or lead

Three Phase Alternators

Star connected

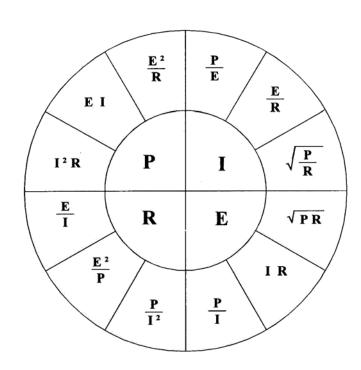
Line voltage = $\sqrt{3}$ x phase voltage

Line current = phase current

Delta connected

Line voltage = phase voltage

Line current = $\sqrt{3}$ x phase current


Three phase power

 $P = \sqrt{3} E_L I_L \cos \Phi$

 E_L = line voltage

 I_L = line current

 $\cos \Phi = \text{power factor}$

	, 1			ω	80 6	0 %	1		
2 E			Ar 39.948 2-8-8	36 Kr 83.80 2-8-18-8 0+2		86 Rn (222) 7-18-32-18-8		71 Lu 174.967	103 Lr (250)
	VIIB	9 F 18.998403 -1	35.453 2-8-7	* *	53 126.905 12-8-18-18-1	85 At (210) 118-32-18-7		70 Yb 173.04	102 No (259)
	Ν	8 0 15.9994 -2	32.06 2-8-6 2-4+6	34 Se 78.96 2-8-18-6	52 Te 127.60 2-8-18-18-6	84 Po (209) -18-32-18-6		69 Tm 168.934	101 Md (258)
	NB	7 N 14.0067 2-5-5-111233448	15 P 30.9737 2-8-5 -3+3+5	• •	51 Sb 121.75 2-8-18-18-5	83 Bi 208.980 -18-32-18-5 +3+5		68 Er 167.26	100 Fm (257)
	IVB	6 C 12.0111 -4+2+4	28.0855 2-8-4 -4+2+4	• • • • • • • • • • • • • • • • • • • •	50 Sn 118.71 2-8-18-18-4	82 Pb 207.2 -18-32-18-4		67 Ho 164.930	99 Es (252)
	₽	m =	13 AI 25.98154 2-8-3 +3	31 Ga 69.72 2-8-18-3	- 44	81 T1 204.383 -18-32-18-3-		66 DX 162.50	98 Cf (251)
S I				30 Zn 65.39 1 2-8-18-2	Cd 112.41 12.8-18-18-2	80 HQ 200.59 -18-32-18-2	112 Uub (277)	65 T b 158.925	97 Bk (247) +3+4
ELEMENTS			8	29 Cu 63.546 2-8-18-7 +1+2	47 Ag 107.868 2-8-18-18-	79 Au 196.957 -18-32-18-1	111 Uuu (272)	64 157.25	
ELE				28 Ni 58.69 2-8-16-2 +2+3		78 Pt 195.08 -18-32-17-1	110 Uun (269)	63 Eu 151.96 +2+3	
THE		ion States	VIIIA	27 Co 58.9332 2 2-8-15-2 +2+3	45 Rh 102.906 2-8-18-16-1	77 	109 Mt (268)	62 Sm 150.36	94 Pu (244) +3+4+5+6
OF 1	Jer.	ass Configuration Oxidation Sta		26 Fe 55.847 2-8-14-; +2+3	7 7 15-1	76 08 190.2 -18-32-14-2 +3+4	108 HS (265)	61 Pm (145)	
BLE	Atomic Number	و ج≥	VIIA	25 Mn 54.9380 2-8-13-2 +2+3+4+7	43 Tc (98) 2-8-18-14-1	75 Re 186.207 -18-32-13-2 +4+6+7	107 Bh (264)	60 Nd 144.24	92 U 238.029
	Ato	Atc Sel	VIA	24 Cr 51.996 2-8-13-1 +2+3+6	42 Mo 95.94 2-8-18-13-1		706 Sg (263)	59 Pr 140.908	91 Pa 231.036 +4+5
PERIODIC TA			¥	23 V 50.9415 2-8-11-2 +2+3+4+5		73 73 180.948 -18-32-11-2	105 Db (262)	58 Ce 140.12 +3+4	
ERIC	9	2-4 2-4 2-4-4-4-	Σ	22 Ti 47.89 2-8-10-2 +2+3+4	- 2	72 Hf 178.49 18-32-10-2 +4	104 (261)	57 La 138.906	.028
Δ '			J ≝	21 84.9559 2-8-9-2 +3	39 Y 88.9059 2-8-18-9-2	;	//	//	
	ΑI	Be 9.01218 -2-2 +2	72 Mg 24.305 2-8-2 +2	20 Ca Ca 4 4 4 4 8-8-2 2 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	38 3 Sr.62 8 2-8-18-8-2	7.33 8-18-8-2	88 Ra 226.025 -18-32-18-8-2 +2		
GROUP IA	1.00794 1 +1 -1	Li	Na 22.98977 2-8-1	39.0983 2-8-8-1 8+1	Rb .4678 3-18-1	55 Cs 132.905 2-8-18-18-8-1	87 Fr (223) -18-32-18-8-1		
· [-	<u> +</u>	0 00 +	8	4	ى 20	φ (0	₩ ○, +		
				PERIOD					

ION NAMES AND FORMULAE

MONATOMIC

POLYATOMIC

$Ag^+ \\ Al^{3+}$	silver ion	BO_{3}^{3}	borate ion
Al^{3+}	aluminum ion	$C_2H_3O_2$	acetate ion
$\mathrm{Au}^{^{+}}$ and $\mathrm{Au}^{2^{+}}$	gold ion	ClO ⁻	hypochlorite ion
Be^{2+}	beryllium ion	ClO_2	chlorite ion
Au ⁺ and Au ²⁺ Be ²⁺ Ca ²⁺	calcium ion	ClO_3^-	chlorate ion
Co ²⁺ and Co ³⁺	cobalt ion	ClO_4	perchlorate ion
Cr ²⁺ and Cr ³⁺	chromium ion	CN ⁻	cyanide ion
Cu ⁺ and Cu ²⁺	copper ion	CO_3^{2-}	carbonate ion
Fe ²⁺ and Fe ³⁺	iron ion	$C_2O_4^{2-}$	oxalate ion
K^{+}	potassium ion	$C_2O_4^{2-}$ CrO_4^{2-}	chromate ion
Li ⁺	lithium ion	$\operatorname{Cr_2O_7}^{2-}$	dichromate ion
Li ⁺ Mg ²⁺ Na ⁺ Zn ²⁺	magnesium ion	HCO_3	hydrogen carbonate or bicarbonate ion
Na^{+}	sodium ion	$\mathrm{H_3O}^+$	hydronium ion
Zn^{2+}	zinc ion	$\mathrm{HPO_4}^{2-}$	hydrogen phosphate ion
		$H_2PO_4^-$	dihydrogen phosphate ion
		HSO_3	hydrogen sulphite or bisulphite ion
		HSO_4	hydrogen sulphate or bisulphate ion
		MnO_4	permanganate ion
		N_3	azide ion
		$\mathrm{NH_4}^+$	ammonium ion
		NO_2	nitrite ion
		NO_3	nitrate ion
		O_2^{2-}	peroxide ion
		OCN ⁻	cyanate ion
		OH-	hydroxide ion
		PO_3^{3-}	phosphite ion
		PO_4^{3-}	phosphate ion
		SCN	thiocyanate ion
		SO_3^{2-}	sulphite ion
		SO_4^{2-}	sulphate ion
		$S_2O_3^{2-}$	thiosulphate ion

USEFUL DATA

= 10.33 m water 1 atmosphere (atmos. Press. At sea level) = 760 mm mercury or = 101.325 kPaor = 0.133 kPa1 mm mercury 1 litre fresh water = 1 kg1 m³ fresh water = 1000 kg = 1 tonne (t) 1 m^3 = 1000 litre 100 kPa = 10.19 m head of water 1 m head of water = 9.81 kPa1 mm head of water = 9.81 Pa= force in newtons \times distance in metres Work done in joules or J Power in watts = work in joules done per second or W = J/s = Nm/s= force (N) \times velocity (m/s) Power (W) 1 kg steam: Latent heat of steam, From and at 100°C = 2257 kJLatent heat of fusion of ice = 335 kJ/kg $= 335 \times 1000$ 1 tonne of refrigeration = 335000 kJ335000 1 tonne of refrigeration / 24 h 24 = 13958 kJ / h= 233 kJ / min**Temperature Scales** $= 0_0 C$ Freezing point of water = 273 K

 $= 100^{0}$ C

= 373 K

= one Kelvin

Boiling point of water

One degree Celsius

Velocities and Acceleration

Acceleration due to gravity (g) = $9.80665 \text{ m/s}^2 (9.8/\text{m/s}^2)$

1 knot = 0.514 m/s

Velocity of sound in air about 335 m/s or 1206 km/h

Velocity of light = 299757 km/s

Angular Measure

1 revolution = 360 degrees = 4 right-angles

1 degree = 60 minutes 1 minute = 60 seconds

1 radian = 57° 17' 45" or approx. 57.3°

Base of Napierian Logarithms = 2.7183

 $Log_{e} (In) = 2.3 \times log_{10}$

INTEREST FORMULAS

i = interest rate per period.

n = number of interest periods.

P = a present sum of money or the principal.

F = a sum of money at the end of n periods equivalent to P with ir

A = an end of period payment for the next n periods equivalent to (often called annual or monthly payment)

1.
$$F=P(1+i)^n$$

2.
$$P = \frac{F}{(1+i)^n}$$

3.
$$A = F \frac{i}{(1+i)^n - 1}$$

4.
$$F = A \frac{(1+i)^n - 1}{i}$$

5.
$$A = P \frac{i(1+i)^n}{(1+i)^n - 1}$$

6.
$$P = A \frac{(1+i)^n - 1}{i(1+i)^n}$$

7.
$$A = (P-L) \frac{i(1+i)^n}{(1+i)^n-1}$$

Where P is purchase cost and L is salvage value.

1% Compound Interest Factors

	Single Pa	yment		Uniform	m Series		
n	Compound Amount Factor F/P	Present Worth Factor P/F	Sinking Fund Factor A/F	Capital Recovery Factor A/P	Compound Amount Factor F/A	Present Worth Factor P/A	
1	1.0100	0.9901	1.000 00	1.010 00	1.000	0.990	
2	1.0201	0.9803	0.49751	0.507 51	2.010	1.970	
3	1.0303	0.9706	0.33002	0.340 02	3.030	2.941	
4	1.0406	0.9610	0.246 28	0.256 28	4.060	3.902	
5	1.0510	0.9515	0.196 04	0.206 04	5.101	4.853	
6	1.0615	0.9420	0.16255	0.17255	6.152	5.795	
7	1.0721	0.9327	0.13863	0.148 63	7.214	6.728	
8	1.0829	0.9235	0.12069	0.13069	8.286	7.652	
9	1.0937	0.9143	0.10674	0.11674	9.369	8.566	
10	1.1046	0.9053	0.095 58	0.105 58	10.462	9.471	1
11	1.1157	0.8963	0.086 45	0.096 45	11.567	10.368	1
12	1.1268	0.8874	0.078 85	0.088 85	12.683	11.255	1
13	1.1381	0.8787	0.072 41	0.082 41	13.809	12.134	1
14	1.1495	0.8700	0.066 90	0.076 90	14.947	13.004	1
15	1.1610	0.8613	0.06212	0.072 12	16.097	13.865	1
16	1.1726	0.8528	0.057 94	0.067 94	17.258	14.718	
17	1.1843	0.8444	0.054 26	0.064 26	18.430	15.562	
8	1.1961	0.8360	0.050 98	0.060 98	19.615	16.398	
19	1.2081	0.8277	0.048 05	0.058 05	20.811	17.226	
20	1.2202	0.8195	0.045 42	0.055 42	22.019	18.046	į.
21	1.2324	0.8114	0.043 03	0.053 03	23.239	18.857	
22	1.2447	0.8034	0.040 86	0.050 86	24.472	19.660	
23	1.2572	0.7954	0.038 89	0.048 89	25.716	20.456	
24	1.2697	0.7876	0.037 07 0.035 41	0.047 07 0.045 41	26.973 28.243	21.243 22.023	
26	1.2953	0.7720	0.033 87	0.043 87	29.526	22.795	
27	1.3082	0.7644	0.032 45	0.042 45	30.821	23.560	
28	1.3213	0.7568	0.031 12	0.041 12	32.129	24.316	
29	1.3345	0.7493	0.029 90	0.039 90	33,450	25.066	
30	1.3478	0.7419	0.028 75	0.03875	34.785	25.808	
31	1,3613	0.7346	0.027 68	0.037 68	36,133	26.542	
32	1.3749	0.7273	0.026 67	0.036 67	37.494	27.270	
33	1.3887	0.7201	0.025 73	0.035 73	38.869	27.990	
34	1.4026	0.7130	0.024 84	0.034 84	40.258	28.703	
35	1.4166	0.7059	0.024 00	0.034 00	41.660	29.409	,
10	1.4889	0.6717	0.02046	0.03046	48.886	32.835	8
45	1.5648	0.6391	0.01771	0.02771	56.481	36.095	
50	1.6446	0.6080	0.01551	0.025 51	64.463	39.196	
55	1.7285	0.5785	0.01373	0.023 73	72.852	42.147	
60	1.8167	0.5504	0.012 24	0.022 24	81.670	44.955	
65	1.9094	0.5237	0.01100	0.021 00	90.937	47.627	
70	2.0068	0.4983	0.009 93	0.01993	100.676	50.169	
75	2.1091	0.4741	0.009 02	0.019 02	110.913	52.587	
80 85	2.2167 2.3298	0.4511	0.008 22 0.007 52	0.018 22 0.017 52	121.672 132.979	54.888 57.078	
90	2.4486	0.4084	0.00690	0.01690	144.863	59.161 61.143	
95 00	2.5735 2.7048	0.3886 0.3697	0.00636	0.01636	157.354 170.481	63.029	
	/ /IIAA	U 107/	11 LHIT A/	U. UI3 6/	1/1/401	D1.U/7	

2% Compound Interest Factors

	Single Pa	yment		Uniform	m Series		
n	Compound Amount Factor F/P	Present Worth Factor P/F	Sinking Fund Factor A/F	Capital Recovery Factor A/P	Compound Amount Factor F/A	Present Worth Factor P/A	1
1	1.0200	0.9804	1.000 00	1.020 00	1.000	0.980	
2	1.0404	0.9612	0.495 05	0.515 05	2.020	1.942	8
3	1.0612	0.9423	0.32675	0.34675	3.060	2.884	
4	1.0824	0.9238	0.242 62	0.262 62	4.122	3.808	
5	1.1041	0.9057	0.19216	0.212 16	5.204	4.713	
6	1.1262	0.8880	0.158 53	0.178 53	6.308	5,601	
7	1.1487	0.8706	0.134 51	0.154 51	7.434	6.472	
8	1.1717	0.8535	0.11651	0.13651	8.583	7.325	
9	1.1951	0.8368	0.10252	0.122 52	9.755	8.162	
10	1.2190	0.8203	0.09133	0.11133	10.950	8.983	1
11	1.2434	0.8043	0.082 18	0.102 18	12.169	9.787	1
12	1.2682	0.7885	0.074 56	0.094 56	13.412	10.575	1
13	1.2936	0.7730	0.068 12	0.088 12	14.680	11.348	1
14	1.3195	0.7579	0.062 60	0.08260	15.974	12.106	1
15	1.3459	0.7430	0.057 83	0.077 83	17.293	12.849	1
16	1.3728	0.7284	0.05365	0.073 65	18.639	13.578	1
17	1.4002	0.7142	0.049 97	0.069 97	20.012	14.292	1
18	1.4282	0.7002	0.04670	0.06670	21.412	14.992	1
19	1.4568	0.6864	0.043 78	0.063 78	22.841	15.678	1
20	1.4859	0.6730	0.04116	0.06116	24.297	16.351	2
21	1.5157	0.6598	0.03878	0.058 78	25.783	17.011	2
22	1.5460	0.6468	0.036 63	0.056 63	27.299	17.658	2
23	1.5769	0.6342	0.034 67	0.054 67	28.845	18.292	2
24	1.6084	0.6217	0.03287	0.05287	30.422	18.914	2
25	1.6406	0.6095	0.031 22	0.051 22	32.030	19.523	2
26	1.6734	0.5976	0.029 70	0.049 70	33.671	20.121	2
27	1.7069	0.5859	0.028 29	0.048 29	35.344	20.707	:
28	1.7410	0.5744	0.026 99	0.046 99	37.051	21.281	
29	1.7758	0.5631	0.025 78	0.045 78	38.792	21.844	:
30	1.8114	0.5521	0.024 65	0.044 65	40.568	22.396	
31	1.8476	0.5412	0.023 60	0.043 60	42.379	22.938	
32	1.8845	0.5306	0.02261	0.04261	44.227	23.468	
33	1.9222	0.5202	0.02169	0.04169	46.112	23.989	
34	1.9607	0.5100	0.02082	0.040 82	48.034	24.499	
35	1.9999	0.5000	0.02000	0.040 00	49.994	24.999	
40	2.2080	0.4529	0.016 56	0.036 56	60.402	27.355	
45	2.4379	0.4102	0.01391	0.033 91	71.893	29.490	
50	2.6916	0.3715	0.01182	0.031 82	84.579	31.424	
55	2.9717	0.3365	0.01014	0.030 14	98.587	33.175	
60	3.2810	0.3048	0.00877	0.028 77	114.052	34.761	
65	3.6225	0.2761	0.007 63	0.027 63	131.126	36.197	
70	3.9996	0.2500	0.006 67	0.026 67	149.978	37.499	
75	4.4158	0.2265	0.005 86	0.025 86	170.792	38.677	
80	4.8754	0.2051	0.005 16	0.025 16	193.772	39.745	
85	5.3829	0.1858	0.004 56	0.024 56	219.144	40.711	
90	5.9431	0.1683	0.004 05	0.024 05	247.157	41.587	
95	6.5617	0.1524	0.003 60	0.023 60	278.085	42.380	
100	7.2446	0.1380	0.003 20	0.023 20	312.232	43.098	1

5% Compound Interest Factors

	Single Pa	yment		Unifor	m Series		
n	Compound Amount Factor F/P	Present Worth Factor P/F	Sinking Fund Fuctor	Capital Recovery Factor A/P	Compound Amount Factor F/A	Present Worth Factor P/A	n
1	1.0500	0.9524	1,000 00	1.050 00	1.000	0.952	1
2	1.1025	0.9070	0.487 80	0.537 80	2.050	1.859	2
3	1.1576	0.8638	0.31721	0.367 21	3.153	2.723	3
4	1.2155	0.8227	0.23201	0.282 01	4.310	3.546	4
5	1.2763	0.7835	0.18097	0.230 97	5.526	4.329	5
6	1.3401	0.7462	0.147 02	0.197 02	6.802	5.076	6
7	1.4071	0.7107	0.122 82	0.17282	8.142	5.786	7
8	1.4775	0.6768	0.10472	0.15472	9.549	6.463	8
9	1.5513	0.6446	0.09069	0.14069	11.027	7.108	9
10	1.6289	0.6139	0.079 50	0.129 50	12.578	7.722	10
11	1.7103	0.5847	0.070 39	0.12039	14.207	8.306	11
12	1.7959	0.5568	0.062 83	0.11283	15.917	8.863	12
13	1.8856	0.5303	0.056 46	0.106 46	17.713	9.394	13
14 15	1.9800	0.5051	0.05102	0.101 02 0.096 34	19.599 21.579	9.899	14
16	2.1829	0.4581	0.042 27	0.092 27	23.657	10.838	16
17	2.2920	0.4363	0.038 70	0.088 70	25.840	11.274	17
18	2.4066	0.4155	0.035 55	0.085 55	28.132	11.690	18
19	2.5270	0.3957	0.03275	0.08275	30.539	12.085	19
20	2.6533	0.3769	0.030 24	0.080 24	33.066	12.462	
21	2.7860	0.3589	0.028 00	0.078 00	35.719	12.821	21
23	2.9253 3.0715	0.3418	0.025 97 0.024 14	0.075 97 0.074 14	38.505 41.430	13.163 13.489	23
24	3.2251	0.3230	0.022 47	0.072 47	44.502	13.799	24
25	3.3864	0.2953	0.020 95	0.070 95	47.727	14.094	25
26	3.5557	0.2812	0.019 56	0.069 56	51.113	14.375	26
27	3.7335	0.2678	0.01829	0.068 29	54.669	14.643	27
28	3.9201	0.2551	0.017 12	0.067 12	58.403	14.898	28
29	4.1161	0.2429	0.016 05	0.066 05	62.323	15.141	29
30	4.3219	0.2314	0.015 05	0.065 05	66.439	15.372	30
31	4.5380	0.2204	0.01413	0.064 13	70.761	15.593	31
32	4.7649	0.2099	0.013 28	0.063 28	75.299	15.803	32
33	5.0032	0.1999	0.012 49	0.062 49	80.064	16.003	33
34	5.2533	0.1904	0.01176	0.061 76	85.067	16.193	34
35	5.5160	0.1813	0.011 07	0.061 07	90.320	16.374	35
40	7.0400	0.1420	0.008 28	0.058 28	120.800	17.159	40
45	8.9850	0.1113	0.006 26	0.056 26	159.700	17.774	45
50	11.4674	0.0872	0.004 78	0.054 78	209.348	18.256	50
55	14.6356	0.0683	0.003 67	0.053 67	272.713	18.633	55
60	18.6792	0.0535	0.002 83	0.052 83	353.584	18.929	60
65	23.8399	0.0419	0.00219	0.052 19	456.798	19.161	65
70	30.4264	0.0329	0.00170	0.05170	588.529	19.343	70
75	38.8327	0.0258	0.00132	0.051 32	756.654	19.485	75
80	49.5614	0.0202	0.001 03	0.051 03	971.229	19.596	80
85	63.2544	0.0158	0.000 80	0.05080	1 245.087	19.684	85
90	80.7304	0.0124	0.000 63	0.05063	1 594 . 607	19.752	90
95	103.0357	0.0097	0.00049	0.05049	2 040 . 694	19.806	95
100	131.5013	0.0076	0.000 38	0.05038	2 610 . 025	19.848	100

10% Compound Interest Factors

	C	Single Payment		Uniform Series				
n	Compound Amount Factor F/P	Present Worth Factor P/F	Sinking Fund Factor A/F	Capital Recovery Factor A/P	Compound Amount Factor F/A	Present Worth Factor P/A	,	
1	1.1000	0.9091	1.000 00	1.100 00	1.000	0.909		
2	1.2100	0.8264	0.476 19	0.576 19	2.100	1.736		
3	1.3310	0.7513	0.302 11	0.402 11	3.310	2.487		
4	1.4641	0.6830	0.215 47	0.315 47	4.641	3.170		
5	1.6105	0.6209	0.163 80	0.263 80	6.105	3.791		
6	1.7716	0.5645	0.12961	0.22961	7.716	4.355		
7	1.9487	0.5132	0.10541	0.20541	9.487	4.868		
8	2.1436	0.4665	0.087 44	0.187 44	11.436	5.335		
9	2.3579	0.4241	0.073 64	0.17364	13.579	5.759		
10	2.5937	0.3855	0.062 75	0.16275	15.937	6.144	1	
11	2.8531	0.3505	0.053 96	0.153 96	18.531	6.495	1	
12	3.1384	0.3186	0.04676	0.14676	21.384	6.814	1	
13	3.4523	0.2897	0.040 78	0.14078	24.523	7.103	1	
14	3.7975	0.2633	0.035 75	0.135 75	27.975	7.367	1	
15	4.1772	0.2394	0.031 47	0.13147	31.772	7.606	1	
16	4.5950	0.2176	0.027 82	0.127 82	35.950	7.824	1	
17	5.0545	0.1978	0.024 66	0.12466	40.545	8.022	1	
18	5.5599	0.1799	0.02193	0.12193	45.599	8.201	1	
19	6.1159	0.1635	0.019 55	0.11955	51.159	8.365	1	
20	6.7275	0.1486	0.01746	0.11746	57.275	8.514	2	
21	7.4002	0.1351	0.015 62	0.11562	64.002	8.649	2	
22	8.1403	0.1228	0.01401	0.11401	71.403	8.772	2	
23	8.9543	0.1117	0.012 57	0.11257	79.543	8.883	2	
24	9.8497	0.1015	0.01130	0.11130	88.497	8.985	2	
25	10.8347	0.0923	0.01017	0.11017	98.347	9.077	2	
26	11.9182	0.0839	0.009 16	0.10916	109.182	9.161	2	
27	13.1100	0.0763	0.008 26	0.108 26	121,100	9.237	2	
28	14.4210	0.0693	0.007 45	0.10745	134.210	9.307	2	
29	15.8631	0.0630	0.00673	0.10673	148.631	9.370	2	
30	17.4494	0.0573	0.006 08	0.106 08	164.494	9.427	3	
31	19,1943	0.0521	0.005 50	0.105 50	181.943	9.479	3	
32	21.1138	0.0474	0.004 97	0.10497	201.138	9.526	3	
33	23.2252	0.0431	0.004 50	0.10450	222.252	9.569	3	
34 35	25.5477 28.1024	0.0391	0.004 07 0.003 69	0.104 07 0.103 69	245.477 271.024	9.609	3	
40	45.2593	0.0221	0.002 26	0.102 26	442.593	9.779	4	
45	72.8905	0.0137	0.00139	0.101 39	718,905	9.863	4	
50	117.3909	0.0085	0.000 86	0.100 86	1 163 . 909	9.915	5	
55 60	189.0591 304.4816	0.0053	0.000 53	0.100 53 0.100 33	1 880.591 3 034.816	9.947	5	
65 70	490.3707	0.0020	0.000 20	0.100 20	4 893 . 707	9.980		
75	789.7470 1 271.8952	0.0013	0.00013	0.10013	7 887 . 470	9.987	- 3	
80		0.0008	0.000 08	0.100 08	12 708 . 954	9.992	į	
85	2 048 . 4002 3 298 . 9690	0.0005	0.000 05	0.100 05	20 474 . 002 32 979 . 690	9.995 9.997	1	
					53 120 . 226			
90	5 313 . 0226	0.0002	0.000 02	0.100 02	85 556 . 760	9.998		
95	8 556.6760 13 780.6123	0.0001	0.00001	0.10001 0.10001	137 796 . 123	9.999	1	

12% Compound Interest Factors

	Single Pa	yment		Unifor	m Series		
n	Compound Amount Factor F/P	Present Worth Factor P/F	Sinking Fund Factor A/F	Capital Recovery Factor A/P	Compound Amount Factor F/A	Present Worth Factor P/A	
1	1,1200	0.8929	1.000 00	1,120 00	1.000	0.893	1
2	1.2544	0.7972	0.47170	0.59170	2.120	1.690	2
3	1.4049	0.7118	0.296 35	0.41635	3.374	2.402	3
4	1.5735	0.6355	0.209 23	0.329 23	4.779	3.037	4
5	1.7623	0.5674	0.15741	0.27741	6.353	3.605	5
6	1.9738	0.5066	0.12323	0.243 23	8.115	4.111	6
7	2.2107	0.4523	0.099 12	0.21912	10.089	4.564	7
8	2.4760	0.4039	0.08130	0.20130	12.300	4.968	8
9	2.7731	0.3606	0.06768	0.18768	14.776	5.328	9
10	3.1058	0.3220	0.056 98	0.17698	17.549	5.650	10
11	3.4785	0.2875	0.04842	0.168 42	20,655	5.938	11
12	3.8960	0.2567	0.04144	0.16144	24.133	6.194	12
13	4.3635	0.2292	0.035 68	0.155 68	28.029	6.424	13
14	4.8871	0.2046	0.03087	0.15087	32.393	6.628	14
15	5.4736	0.1827	0.026 82	0.146 82	37.280	6.811	15
16	6.1304	0.1631	0.023 39	0.143 39	42.753	6.974	16
17	6.8660	0.1456	0.02046	0.14046	48.884	7.120	17
18	7.6900	0.1300	0.01794	0.13794	55.750	7.250	18
19	8.6128	0.1161	0.01576	0.135 76	63.440	7.366	19
20	9.6463	0.1037	0.013 88	0.13388	72.052	7.469	20
21	10.8038	0.0926	0.01224	0.13224	81.699	7.562	21
22	12.1003	0.0826	0.01081	0.13081	92.503	7.645	22
23	13.5523	0.0738	0.009 56	0.129 56	104.603	7.718	23
24	15.1786	0.0659	0.00846	0.128 46	118.155	7.784	24
25	17,0001	0.0588	0.00750	0.127 50	133.334	7.843	25
26	19.0401	0.0525	0.00665	0.12665	150.334	7.896	26
27	21.3249	0.0469	0.005 90	0.125 90	169.374	7.943	27
28	23.8839	0,0419	0.005 24	0.125 24	190.699	7.984	28
29	26.7499	0.0374	0.004 66	0.124 66	214.583	8.022	29
30	29.9599	0.0334	0.00414	0.124 14	241.333	8.055	30
31	33.5551	0.0298	0.003 69	0.12369	271.292	8.085	31
32	37.5817	0.0266	0.003 28	0.123 28	304.847	8.112	32
33	42.0915	0.0238	0.00292	0.12292	342.429	8.135	33
34	47.1425	0.0212	0.00260	0.12260	384.520	8.157	34
35	52.7996	0.0189	0.002 32	0.12232	431.663	8.176	35
40	93.0510	0.0107	0.00130	0.12130	767.091	8.244	40
45	163.9876	0.0061	0.00074	0.12074	1 358.230	8.283	45
50	289.0022	0.0035	0.000 42	0.12042	2 400.018	8.305	50
				0.120 00		8.333	

15% Compound Interest Factors

	Single P	ayment		Unifor	m Series		
n	Compound Amount Factor F/P	Present Worth Factor P/F	Sinking Fund Factor A/F	Capital Recovery Factor A/P	Compound Amount Factor F/A	Present Worth Factor P/A	n
1	1.1500	0.8696	1,000 00	1.150 00	1.000	0.870	1
2	1.3225	0.7561	0.465 12	0.615 12	2.150	1.626	2
3	1,5209	0.6575	0.287 98	0.437 98	3.472	2.283	3
4	1.7490	0.5718	0.200 26	0.35027	4.993	2.855	4
5	2.0114	0.4972	0.148 32	0.29832	6.742	3.352	5
6	2.3131	0.4323	0.11424	0.264 24	8.754	3.784	6
7	2.6600	0.3759	0.090 36	0.24036	11.067	4.160	7
8	3.0590	0.3269	0.072 85	0.22285	13.727	4.487	8
9	3.5179	0.2843	0.059 57	0.209 57	16.786	4.772	9
10,	4.0456	0.2472	0.049 25	0.199 25	20.304	5.019	10
11	4.6524	0.2149	0.041 07	0.19107	24.349	5.234	11
12	5.3503	0.1869	0.034 48	0.18448	29.002	5.421	12
13	6.1528	0.1625	0.029 11	0.17911	34.352	5.583	13
14	7.0757	0.1413	0.024 69	0.17469	40.505	5.724	14
15	8.1371	0.1229	0.02102	0.171 02	47.580	5.847	15
16	9.3576	0.1069	0.01795	0.16795	55.717	5.954	16
17	10.7613	0.0929	0.015 37	0.165 37	65.075	6.047	17
18	12.3755	0.0808	0.013 19	0.163 19	75.836	6.128	18
19	14.2318	0.0703	0.01134	0.16134	88.212	6.198	19
20	16.3665	0.0611	0.009 76	0.15976	102.444	6.259	20
21	18.8215	0.0531	0.008 42	0.15842	118.810	6.312	2
22	21.6447	0.0462	0.007 27	0.157 27	137.632	6.359	2
23	24.8915	0.0402	0.006 28	0.15628	159.276	6.399	2
24	28.6252	0.0349	0.005 43	0.155 43	184.168	6.434	2
25	32.9190	0.0304	0.00470	0.15470	212.793	6.464	2
26	37.8568	0.0264	0.004 07	0.154 07	245.712	6.491	2
27	43.5353	0.0230	0.003 53	0.153 53	283.569	6.514	2
28	50.0656	0.0200	0.003 06	0.153 06	327.104	6.534	2
29	57.5755	0.0174	0.00265	0.15265	377.170	6.551	2
30	66.2118	0.0151	0.00230	0.152 30	434.745	6.566	3
31	76.1435	0.0131	0.002 00	0.152 00	500.957	6.579	3
32	87.5651	0.0114	0.00173	0.15173	577.100	6.591	3
33	100.6998	0.0099	0.00150	0.151 50	664.666	6.600	3
34	115.8048	0.0086	0.00131	0.15131	765.365	6.609	3
35	133.1755	0.0075	0.001 13	0.151 13	881.170	6.617	3
40	267.8635	0.0037	0.000 56	0.150 56	1 779 . 090	6.642	4
45	538.7693	0.0019	0.000 28	0.150 28	3 585 . 128	6.654	4
50	1 083 . 6574	0.0009	0.00014	0.15014	7 217 . 716	6.661	5
00				0.15000		6.667	

20% Compound Interest Factors

	Single Pa	ayment		Uniform	m Series		
n	Compound Amount Factor F/P	Present Worth Factor P/F	Sinking Fund Factor A/F	Capital Recovery Factor A/P	Compound Amount Factor F/A	Present Worth Factor P/A	n
1	1.2000	0.8333	1.000 00	1,200 00	1.000	0.833	1
2	1.4400	0.6944	0.45455	0.654 55	2.200	1.528	2
3	1.7280	0.5787	0.27473	0.47473	3.640	2.106	3
4	2.0736	0.4823	0.18629	0.386 29	5.368	2.589	4
5	2.4883	0.4019	0.13438	0.334 38	7.442	2.991	5
6	2,9860	0.3349	0.10071	0.30071	9.930	3.326	6
7	3.5832	0.2791	0.077 42	0.277 42	12.916	3.605	7
8	4.2998	0.2326	0.06061	0.26061	16.499	3.837	8
9	5.1598	0.1938	0.048 08	0.248 08	20.799	4.031	9
10	6.1917	0.1615	0.038 52	0.238 52	25.959	4.192	10
11	7.4301	0.1346	0.03110	0.231 10	32.150	4.327	11
12	8.9161	0.1122	0.025 26	0.225 26	39.581	4.439	12
13	10.6993	0.0935	0.02062	0.22062	48.497	4.533	13
14	12.8392	0.0779	0.01689	0.21689	59.196	4.611	14
15	15.4070	0.0649	0.01388	0.21388	72.035	4.675	15
16	18.4884	0.0541	0.01144	0.21144	87.442	4.730	16
17	22.1861	0.0451	0.00944	0.209 44	105.931	4.775	17
18	26.6233	0.0376	0.007 81	0.207 81	128.117	4.812	18
19	31.9480	0.0313	0.00646	0.20646	154.740	4.844	19
20	38.3376	0.0261	0.005 36	0.205 36	186.688	4.870	20
21	46.0051	0.0217	0.004 44	0.204 44	225.026	4.891	21
22	55.2061	0.0181	0.003 69	0.203 69	271.031	4.909	22
23 24	66.2474	0.0151	0.003 07	0.203 07	326.237	4.925	23
25	79.4968 95.3962	0.0126	0.002 55	0.202 55	392.484	4.937 4.948	25
			0.002 12	0.202 12	471.981		
26	114.4755	0.0087	0.00176	0.20176	567.377	4.956	20
27	137.3706	0.0073	0.00147	0.201 47	681.853	4.964	2
28	164.8447	0.0061	0.001 22	0.201 22	819.223	4.970	2
29	197.8136	0.0051	0.001 02	0.201 02	984.068	4.975	2
30	237.3763	0.0042	0.000 85	0.200 85	1 181 . 882	4.979	30
31	284.8516	0.0035	0.000 70	0.20070	1419.258	4.982	3
32	341.8219	0.0029	0.000 59	0.200 59	1704.109	4.985	3
33	410.1863	0.0024	0.00049	0.20049	2 045 . 931	4.988	3.
34	492.2235	0.0020	0.00041	0.20041	2 456 . 118	4.990	3
35	590.6682	0.0017	0.00034	0.200 34	2 948 . 341	4.992	3
40	1 469 . 7716	0.0007	0.00014	0.20014	7 343 . 858	4.997	4
45	3 657.2620	0.0003	0.000 05	0.200 05	18 281 . 310	4.999	4
50	9 100 . 4382	0.0001	0.00002	0.200 02	45 497 . 191	4.999	5
80				0.200 00		5.000	œ

25% Compound Interest Factors

	Single Pag	yment		Uniform	m Series		
n	Compound Amount Factor F/P	Present Worth Factor P/F	Sinking Fund Factor A/F	Capital Recovery Factor A/P	Compound Amount Factor F/A	Present Worth Factor P/A	T
1	1.2500	0.8000	1,000 00	1.250 00	1.000	0.800	1
2	1.5625	0.6400	0.444 44	0.69444	2.250	1.440	2
3	1.9531	0.5120	0.26230	0.51230	3.813	1.952	3
4	2.4414	0.4096	0.173 44	0.423 44	5.766	2.362	4
5	3.0518	0.3277	0.12185	0.371 85	8.207	2.689	5
6	3.8147	0.2621	0.088 82	0.338 82	11.259	2.951	6
7	4.7684	0.2097	0.06634	0.31634	15.073	3.161	7
8	5.9605	0.1678	0.05040	0.300 40	19.842	3.329	8
9	7.4506	0.1342	0.03876	0.288 76	25.802	3.463	9
10	9.3132	0.1074	0.03007	0.28007	33.253	3.571	10
11	11.6415	0.0859	0.02349	0.273 49	42.566	3.656	11
12	14.5519	0.0687	0.01845	0.268 45	54.208	3.725	12
13	18.1899	0.0550	0.01454	0.264 54	68.760	3.780	13
14	22.7374	0.0440	0.01150	0.261 50	86.949	3.824	14
15	28.4217	0.0352	0.009 12	0.259 12	109.687	3.859	15
16	35.5271	0.0281	0.007 24	0.257 24	138.109	3.887	16
17	44.4089	0.0225	0.00576	0.255 76	173.636	3.910	17
18	55.5112	0.0180	0.004 59	0.254 59	218.045	3.928	18
19	69.3889	0.0144	0.003 66	0.253 66	273.556	3.942	19
20	86.7362	0.0115	0.00292	0.252 92	342.945	3.954	20
21	108.4202	0.0092	0.00233	0.25233	429.681	3.963	21
22	135.5253	0.0074	0.00186	0.25186	538.101	3.970	22
23	169.4066	0.0059	0.00148	0.25148	673.626	3.976	23
24	211.7582	0.0047	0.001 19	0.251 19	843.033	3.981	24
25	264.6978	0.0038	0.00095	0.25095	1 054 . 791	3.985	25
26	330.8722	0.0030	0.00076	0.25076	1 319 . 489	3.988	26
27	413.5903	0.0024	0.00061	0.25061	1 650.361	3.990	27
28	516.9879	0.0019	0.00048	0.25048	2 063 . 952	3.992	28
29	646.2349	0.0015	0.00039	0.250 39	2 580.939	3.994	29
30	807.7936	0.0012	0.00031	0.25031	3 227.174	3.995	30
31	1 009 . 7420	0.0010	0.000 25	0.250 25	4 034 . 968	3.996	31
32	1 262 . 1774	0.0008	0.00020	0.250 20	5 044 . 710	3.997	3
33	1 577.7218	0.0006	0.00016	0.25016	6 306 . 887	3.997	3.
34	1 972.1523	0.0005	0.00013	0.250 13	7 884 . 609	3.998	34
35	2 465 . 1903	0.0004	0.00010	0.25010	9 856.761	3.998	35
40	7 523 . 1638	0.0001	0.00003	0.250 03	30 088 . 655	3.999	40
45	22 958 . 8740	0.0001	0.00001	0.25001	91 831 . 496	4.000	45
50	70 064 . 9232	0.0000	0.00000	0.250 00	280 255 . 693	4.000	50
80				0.25000		4.000	80

30% Compound Interest Factors

	Single Pa	yment		Uniform Series				
n	Compound Amount Factor F/P	Present Worth Factor P/F	Sinking Fund Factor A/F	Capital Recovery Factor A/P	Compound Amount Factor F/A	Present Worth Factor P/A	n	
1	1.3000	0.7692	1.000 00	1,300 00	1,000	0.769	1	
2	1.6900	0.5917	0.43478	0.73478	2,300	1.361	2	
3	2.1970	0.4552	0.250 63	0.55063	3.990	1.816	3	
4	2.8561	0.3501	0,16163	0.46163	6.187	2.166	4	
5	3.7129	0.2693	0.11058	0.41058	9.043	2.436	5	
6	4.8268	0.2072	0.078 39	0.378 39	12.756	2.643	6	
7	6.2749	0.1594	0.056 87	0.356 87	17.583	2.802	7	
8	8.1573	0.1226	0.041 92	0.34192	23.858	2.925	8	
9	10.6045	0.0943	0.03124	0.33124	32.015	3.019	9	
10	13.7858	0.0725	0.023 46	0.323 46	42.619	3.092	10	
11	17.9216	0.0558	0.01773	0.31773	56.405	3.147	11	
12	23.2981	0.0429	0.013 45	0.313 45	74.327	3.190	12	
13	30.2875	0.0330	0.01024	0.31024	97.625	3.223	13	
14	39.3738	0.0254	0.007 82	0.307 82	127.913	3.249	14	
15	51.1859	0.0195	0.005 98	0.30598	167.286	3.268	15	
16	66.5417	0.0150	0.004 58	0.304 58	218.472	3.283	16	
17	86.5042	0.0116	0.003 51	0.30351	285.014	3.295	17	
18	112.4554	0.0089	0.002 69	0.30269	371.518	3.304	18	
19	146.1920	0.0068	0.002 07	0.302 07	483.973	3.311	19	
20	190.0496	0.0053	0.00159	0.301 59	630.165	3.316	20	
21	247.0645	0.0040	0.001 22	0.301 22	820.215	3.320	21	
22	321.1839	0.0031	0.00094	0.30094	1 067 . 280	3.323	22	
23	417.5391	0.0024	0.00072	0.30072	1 388.464	3.325	23	
24	542.8008	0.0018	0.000 55	0.300 55	1 806.003	3.327	24	
25	705.6410	0.0014	0.000 43	0.300 43	2 348 . 803	3.329	25	
26	917.3333	0.0011	0.000 33	0.30033	3 054 . 444	3.330	26	
27	1 192.5333	0.0008	0.000 25	0.300 25	3 971 . 778	3.331	27	
28	1 550.2933	0.0006	0.000 19	0.30019	5 164 . 311	3.331	28	
29	2 015 . 3813	0.0005	0.00015	0.300 15	6714.604	3.332	29	
30	2 619 . 9956	0.0004	0.00011	0.30011	8 729.985	3.332	30	
31	3 405.9943	0.0003	0.00009	0.300 09	11 349 . 981	3.332	31	
32	4 427 . 7926	0.0002	0.00007	0.300 07	14 755 . 975	3.333	32	
33	5 756.1304	0.0002	0.00005	0.300 05	19 183 . 768	3.333	33	
34	7 482 . 9696	0.0001	0.000 04	0.300 04	24 939 . 899	3.333	34	
35	9 727 . 8604	0.0001	0.000 03	0.300 03	32 422 . 868	3.333	35	
00				0.30000		3.333	00	

This material is owned by Power Engineering Training Systems and may not be modified from its original form. Duplication of this material for student use in-class or for examination purposes is permitted without written approval.

Address all inquiries to:

Power Engineering Training Systems 1301 – 16 Ave. NW, Calgary, AB Canada T2M 0L4 1-866-256-8193

